Electroencephalogram spindle patterns corresponding to two different phenomena-natural sleep and propofol anesthesia-are compared. The spindles are extracted from 5 overnight sleep recordings and 10 recordings of deep propofol anesthesia. Mean frequency, angle of the trend in instant frequency as well as 3 nonlinear parameters-spectral entropy, approximate entropy, and Higuchi fractal dimension- are calculated to characterize the spindle waveforms. Using the Wilcoxon rank sum test with significance level of 0.01, all the mentioned features, except approximate entropy, differ significantly for the two types of EEG spindles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2006.259909 | DOI Listing |
Neurology
January 2025
Department of Neurology, Massachusetts General Hospital, Boston.
Background And Objectives: Rolandic epilepsy (RE), the most common childhood focal epilepsy syndrome, is characterized by a transient period of sleep-activated epileptiform activity in the centrotemporal regions and variable cognitive deficits. Sleep spindles are prominent thalamocortical brain oscillations during sleep that have been mechanistically linked to sleep-dependent memory consolidation in animal models and healthy controls. Sleep spindles are decreased in RE and related sleep-activated epileptic encephalopathies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115.
Sleep spindles are cortical electrical oscillations considered critical for memory consolidation and sleep stability. The timing and pattern of sleep spindles are likely to be important in driving synaptic plasticity during sleep as well as preventing disruption of sleep by sensory and internal stimuli. However, the relative importance of factors such as sleep depth, cortical up/down-state, and temporal clustering in governing sleep spindle dynamics remains poorly understood.
View Article and Find Full Text PDFResuscitation
December 2024
Department of Critical Care Medicine, Hospital for Sick Children, Department of Paediatrics, University of Toronto, Neurosciences and Mental Health Program, Research Institute Toronto, ON, Canada.
Aim: To evaluate the ability of blood-biomarkers, clinical examination, electrophysiology, or neuroimaging, assessed within 14 days from return of circulation to predict good neurological outcome in children following out- or in-hospital cardiac arrest.
Methods: Medline, EMBASE and Cochrane Trials databases were searched (2010-2023). Sensitivity and false positive rates (FPR) for good neurological outcome (defined as either 'no, mild, moderate disability or minimal change from baseline') in paediatric survivors were calculated for each predictor.
Front Pharmacol
December 2024
Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Background: Mice play a crucial role in studying the mechanisms of general anesthesia. However, identifying reliable EEG markers for different depths of anesthesia induced by multifarious agents remains a significant challenge. Spindle activity, typically observed during NREM sleep, reflects synchronized thalamocortical activity and is characterized by a frequency range of 7-15 Hz and a duration of 0.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Computer Engineering, Jordan University of Science and Technology, Irbid, Jordan.
The electroencephalogram (EEG) is a major diagnostic tool that provides detailed insight into the electrical activity of the brain. This signal contains a number of distinctive waveform patterns that reflect the subject's health state in relation to sleep, neurological disorders, memory functions, and more. In this regard, sleep spindles and K-complexes are two major waveform patterns of interest to specialists, who visually inspect the recordings to identify these events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!