The design and development of a 24-hour ambulatory physiological data collection system is reported. The system was designed specifically to support the needs of investigators studying mind-body interventions but could be used for a variety of research needs. The system is novel in that it supports a wide variety of physiologic sensors with a relatively high sample rate, full data storage, and standalone run-time of greater than 24 hours. Experience with data acquisition and methods for post-acquisition data analysis are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2006.259476 | DOI Listing |
Nanomicro Lett
January 2025
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films.
View Article and Find Full Text PDFLangmuir
January 2025
Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
The rapid development of wearable technology, flexible electronics, and human-machine interaction has brought about revolutionary changes to the fields of motion analysis and physiological monitoring. Sensors for detecting human motion and physiological signals have become a hot topic of current research. Inspired by the muscle fiber structure, this paper proposed a highly stable strain sensor that was composed of stretchable Spandex fibers (SPF), multiwalled carbon nanotubes (MWCNTs), and silicone rubber (Ecoflex).
View Article and Find Full Text PDFJ Cell Sci
January 2025
Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
G protein-coupled receptor (GPCR) signalling pathways underlie numerous physiological processes, are implicated in many diseases and are major targets for therapeutics. There are more than 800 GPCRs, which together transduce a vast array of extracellular stimuli into a variety of intracellular signals via heterotrimeric G protein activation and multiple downstream effectors. A key challenge in cell biology research and the pharmaceutical industry is developing tools that enable the quantitative investigation of GPCR signalling pathways to gain mechanistic insights into the varied cellular functions and pharmacology of GPCRs.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 China. Electronic address:
Conductive hydrogel strain sensors demonstrate extensive potential in artificial robotics, human-computer interaction, and health monitoring, owing to their excellent flexibility and biocompatibility. Wearable strain sensors for real-time monitoring of human activities require hydrogels with self-adhesion, desirable sensitivity, and wide working range. However, balancing the high sensitivity and a wide working range remains a challenge.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
School of Clinical Medicine, Discipline of Women's Health, Faculty of Medicine, University of New South Wales, Royal Hospital for Women, Sydney, Australia; Department of Maternal-Fetal Medicine, Royal Hospital for Women, Sydney, Australia. Electronic address:
Diabetes and cardiovascular disease are interlinked chronic conditions that necessitate continuous and precise monitoring of physiological and environmental parameters to prevent complications. Non-invasive monitoring technologies have garnered significant interest due to their potential to alleviate the current burden of diabetes and cardiovascular disease management. However, these technologies face limitations in accuracy and reliability due to interferences from physiological and environmental factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!