This paper describes the ElePhant (Electronic Phantom)-an anatomical correct simulation system based on 3D rapid prototyping models for the otologic intervention "Mastoidectomy". The anatomical structures of the head are created with plaster as base material using 3D-printing as rapid prototyping technology (RPT). Structures at risk, represented by electrically conductible material and fiber optics, are realized as an electric circuit and can be detected during the simulation of the surgical procedure. An accuracy study of 15 identical RPT-models compared to the 3D reconstructed CT-dataset of the patient showed that the mean accuracy is lower than the reconstructed CT layer thickness of 0.5 mm. An evaluation study of the ElePhant-system for "Mastoidectomy" was performed by 7 ENT-surgeons. The mean value of the study questionnaire (evaluation range from -2 (not at all) to +2 (very good)) was +1.2. The results showed that the ElePhant can simulate "Mastoidectomy" realistically. It is especially suitable for the simulation of the correct representation and position of the anatomical structures, realistic operation setting, and realistic milling properties of the bone structure. Furthermore it is applicable for training of surgeons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2006.260542 | DOI Listing |
Reg Anesth Pain Med
January 2025
Department of Anesthesiology & Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
Background: Sacroiliac joint (SIJ) dysfunction accounts for the etiology of pain in 15%-30% of low back pain cases. Some patients with conservative treatment-refractory SIJ dysfunction undergo radiofrequency (RF) ablation of the SIJ for prolonged pain relief. This procedure involves placing up to 12 RF probes in what is an invasive, resource-intensive, and time-consuming process.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan.
This study presents a novel method for creating customized brain slice matrices using Computer-Aided Design (CAD) and 3D printing technology. Brain Slice Matrices are essential jigs for the reproducible preparation of brain tissue sections in neuroscience research. Our approach leverages the advantages of 3D printing, including design flexibility, cost-effectiveness, and rapid prototyping, to produce custom-made brain matrices based on specific morphometric measurements.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America.
Tick-borne spotted fever rickettsioses (SFRs) continue to cause severe illness and death in otherwise-healthy individuals due to lack of a timely and reliable diagnostic laboratory test. We recently identified a diagnostic biomarker for SFRs, the putative N-acetylmuramoyl-l-alanine amidase RC0497. Here, we developed a prototype laboratory test that targets RC0497 for diagnosis of SFRs.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil.
A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
January 2025
1School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; email:
Production of polymer material goods on-demand is a recurring science fiction element, but advances in chemistry and engineering have pushed it closer to reality. Experienced at a hobby scale by 3D printing enthusiasts and at an industrial level through rapid prototyping and modular manufacturing, the approach is on its way to further flexibility and high-performance material production. We review the advances in on-demand materials design as well as manufacturing, using examples in space exploration and sustainability, because these are cases where the value proposition for rapid changes in materials is strong.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!