Analysis of ambulatory ECG signal.

Conf Proc IEEE Eng Med Biol Soc

Dept. of Electr. Eng., Indian Inst. of Technol., Mumbai, India.

Published: March 2008

Ambulatory electrocardiogram (ECG) recorders are increasingly in use by people suffering from cardiac abnormalities. However, the ECG signal acquired by the ambulatory recorder is influenced by motion artifacts induced by any body movement activity (BMA). The goal of the paper is to demonstrate that it is possible to determine the BMA from the motion artifacts in the ECG signal itself. The ECG signal during a specific BMA is presumed to be an additive mix of signals due to cardiac activities, motion artifacts induced due to the BMA and sensor noise. We propose to characterize and determine the BMA from the corresponding motion artifact data in the ECG signal itself. The proposed technique is useful for removal of motion artifacts from the ECG signals for ambulatory cardiac monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2006.259315DOI Listing

Publication Analysis

Top Keywords

ecg signal
20
motion artifacts
16
artifacts induced
8
determine bma
8
artifacts ecg
8
ecg
7
signal
5
motion
5
bma
5
analysis ambulatory
4

Similar Publications

A Deep Learning Approach for Mental Fatigue State Assessment.

Sensors (Basel)

January 2025

Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing 100191, China.

This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.

View Article and Find Full Text PDF

Generally, the electrocardiography (ECG) system plays an important role in preventing and diagnosing heart diseases. To further improve the amenity and convenience of using an ECG system, we built a customized capacitive electrocardiography (cECG) system with one wet electrode, sixteen non-contact electrodes, two ADS1299 chips, and one STM32F303-based microcontroller unit (MCU). This new cECG system could acquire, save, and display the ECG data in real time.

View Article and Find Full Text PDF

A knowledge embedded multimodal pseudo-siamese model for atrial fibrillation detection.

Sci Rep

January 2025

School of Computer Science and Engineering, Changchun University of Technology, Changchun, 130102, People's Republic of China.

Atrial fibrillation (AF) is a common arrhythmia disease with a higher incidence rate. The diagnosis of AF is time-consuming. Although many ECG classification models have been proposed to assist in AF detection, they are prone to misclassifying indistinguishable noise signals, and the context information of long-term signals is also ignored, which impacts the performance of AF detection.

View Article and Find Full Text PDF

Diabetes is a chronic condition, and traditional monitoring methods are invasive, significantly reducing the quality of life of the patients. This study proposes the design of an innovative system based on a microcontroller that performs real-time ECG acquisition and evaluates the presence of diabetes using an Edge-AI solution. A spectrogram-based preprocessing method is combined with a 1-Dimensional Convolutional Neural Network (1D-CNN) to analyze the ECG signals directly on the device.

View Article and Find Full Text PDF

Detecting anomalies in smart wearables for hypertension: a deep learning mechanism.

Front Public Health

January 2025

Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia.

Introduction: The growing demand for real-time, affordable, and accessible healthcare has underscored the need for advanced technologies that can provide timely health monitoring. One such area is predicting arterial blood pressure (BP) using non-invasive methods, which is crucial for managing cardiovascular diseases. This research aims to address the limitations of current healthcare systems, particularly in remote areas, by leveraging deep learning techniques in Smart Health Monitoring (SHM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!