Computation intelligent for eukaryotic cell-cycle gene network.

Conf Proc IEEE Eng Med Biol Soc

Dept. of Electr. Eng., Da-Yeh Univ., Chang-Hwa, Taiwan, ROC.

Published: March 2008

Computational intelligent approaches is adopted to construct the S-system of eukaryotic cell cycle for further analysis of genetic regulatory networks. A highly nonlinear power-law differential equation is constructed to describe the transcriptional regulation of gene network from the time-courses dataset. Global artificial algorithm, based on hybrid differential evolution, can achieve global optimization for the highly nonlinear differential gene network modeling. The constructed gene regulatory networks will be a reference for researchers to realize the inhibitory and activatory operator for genes synthesis and decomposition in Eukaryotic cell cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2006.260339DOI Listing

Publication Analysis

Top Keywords

gene network
12
eukaryotic cell
8
cell cycle
8
regulatory networks
8
highly nonlinear
8
computation intelligent
4
intelligent eukaryotic
4
eukaryotic cell-cycle
4
gene
4
cell-cycle gene
4

Similar Publications

Background: Epistasis, the phenomenon where the effect of one gene (or variant) is masked or modified by one or more other genes, significantly contributes to the phenotypic variance of complex traits. Traditionally, epistasis has been modeled using the Cartesian epistatic model, a multiplicative approach based on standard statistical regression. However, a recent study investigating epistasis in obesity-related traits has identified potential limitations of the Cartesian epistatic model, revealing that it likely only detects a fraction of the genetic interactions occurring in natural systems.

View Article and Find Full Text PDF

Metabolomic and Transcriptomic Analysis Reveals Metabolic-Immune Interactions in Choroid Neovascularization.

Exp Eye Res

December 2024

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China; Key laboratory of Myopia and Related Eye Diseases, NHC, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China. Electronic address:

Choroid neovascularization (CNV) is a distinct type of age-related macular degeneration (AMD) with a poor prognosis and responsible for the majority of vision loss in the elderly population. The laser-induced CNV model is a well-established animal model frequently used to study CNV. In this study, we performed an integrated analysis of metabolomic and transcriptomic data from CNV samples, utilizing multiple approaches including single-sample gene set enrichment analysis (ssGSEA), correlation analysis, and weighted gene co-expression network analysis (WGCNA), alongside various bioinformatics platforms, to identify key metabolic and immune signatures and to investigate their interplay during angiogenesis.

View Article and Find Full Text PDF

Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea.

Dev Biol

December 2024

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:

The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.

View Article and Find Full Text PDF

Comprehensive analysis of heterogeneity and cell-cell interactions in Crohn's disease reveals novel location-specific insights.

J Adv Res

December 2024

Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. Electronic address:

Introduction: In Crohn's disease (CD), lesions are mainly distributed in a segmental manner, with the primary sites of involvement being the ileum and colon. Heterogeneity in colon and ileum results in location-specific clinical presentations and therapeutic responses. Mucosal healing tends to be more readily and quickly achieved in the colon than in the ileum, where lesions are more likely to develop into complex behaviors.

View Article and Find Full Text PDF

Metabolome and transcriptome profiling reveal tRNA-derived small RNAs regulated glutathione metabolism in intrauterine growth-restricted pigs liver.

Int J Biol Macromol

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

Intrauterine growth retardation (IUGR) has become a difficult problem in animal husbandry and is often accompanied by the occurrence of metabolic syndrome. tRNA-derived small RNAs (tsRNAs) are a novel class of regulatory small noncoding RNAs. However, the involvement of tsRNA in regulating the mechanism of IUGR remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!