A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrocoagulation of a real reactive dyebath effluent using aluminum and stainless steel electrodes. | LitMetric

Electrocoagulation of a real reactive dyebath effluent using aluminum and stainless steel electrodes.

J Hazard Mater

Istanbul Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34469 Maslak, Istanbul, Turkey.

Published: January 2008

Treatment of real reactive dyebath effluent comprising of an exhausted reactive dyebath and its sequential rinses with electrocoagulation (EC) using aluminum (Al) and stainless steel (SS) electrodes was investigated. The experimental study focused on the effect of applied current density (22-87 mA/cm(2); at an initial, optimum pH of 5.5) on decolorization and COD removal rates using Al and SS as electrode materials. Results have indicated that the treatment efficiency was enhanced appreciably by increasing the applied current density when Al electrodes were used for EC, whereas no clear correlation existed between current density and removal rates for EC with SS electrodes the treatment efficiency could only be improved when the applied current density was in the range of 33-65 mA/cm(2). It was established that EC with SS electrodes was superior in terms of decolorization kinetics (99-100% color removal after 10-15 min EC at all studied current densities), whereas EC with Al electrodes was more beneficial for COD removal in terms of electrical energy consumption (5 kWh/m(3) wastewater for EC with Al electrodes instead of 9 kWh/m(3) wastewater for EC with SS electrodes).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2007.09.032DOI Listing

Publication Analysis

Top Keywords

current density
16
reactive dyebath
12
applied current
12
real reactive
8
dyebath effluent
8
aluminum stainless
8
stainless steel
8
electrodes
8
steel electrodes
8
electrodes treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!