Effects of acid concentration and solvent choice on enzymatic acrylation by Candida antarctica lipase B.

J Biotechnol

Department of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.

Published: January 2008

Lipase-mediated acrylation is an attractive alternative to more traditional chemical processes, since it provides specific catalysis under mild conditions. A detailed study of the effects of solvent choice and substrate concentrations on the acrylation of octanol by Candida antarctica lipase B (Novozym 435) is presented. Acrylic acid was found to have a pronounced inhibitory effect. Partial neutralisation of the acid substrate by addition of an organo-soluble base markedly altered the activity profile, indicating the inhibitory mechanism to be related to acid-base interactions. The concentration of acrylic acid to be employed was found to be important in the choice of an appropriate solvent. At low acrylic acid concentrations, the highest rates and conversions were obtained using hydrophobic solvents, whereas at higher acrylic acid concentrations more polar solvents were advantageous.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2007.09.002DOI Listing

Publication Analysis

Top Keywords

acrylic acid
16
solvent choice
8
candida antarctica
8
antarctica lipase
8
acid concentrations
8
acid
5
effects acid
4
acid concentration
4
concentration solvent
4
choice enzymatic
4

Similar Publications

Solvent-Responsive Glass Transition Behavior of Polyelectrolyte Complexes.

Macromolecules

January 2025

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.

Polyelectrolyte complexes (PECs) have attracted considerable attention owing to their unique physicochemical properties and potential applications as smart materials. Herein, the glass transitions of PECs solvated with varying alcohols are investigated in poly(diallyldimethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes by using modulated differential scanning calorimetry (MDSC). Solvents with one or two hydroxyl groups are selected to examine the effect of PAA-solvent interactions on the glass transition temperature ( ).

View Article and Find Full Text PDF

Robust-adhesion and high-mechanical strength hydrogel for efficient wet tissue adhesion.

J Mater Chem B

January 2025

Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.

Bioadhesive hydrogels show great promise in wound closure due to their minimally invasive nature and ease of use. However, they typically exhibit poor wet adhesion and mechanical properties on wet tissues. Herein, a ready-to-use bioadhesive hydrogel (denoted as PAA-NHS/C-CS) with rapidly robust adhesion and high mechanical strength is developed a simple one-pot UV crosslinking polymerization of acrylic acid (AA), catechol-functionalized chitosan (C-CS), and acrylic acid -hydroxysuccinimide ester (AA-NHS ester).

View Article and Find Full Text PDF

Eutectogels are recently emerged as promising alternatives to hydrogels owing to their good environmental stability derived from deep eutectic solvents (DES). However, construction of competent eutectogels with both high conductivity and mechanical toughness is still difficult to achieve yet highly demanded. In this work, new LMNP-PEDOT-CMC-AA (LPCA) eutectogels are prepared using acrylic acid (AA) and carboxymethylcellulose sodium (CMC) as polymeric networks, liquid metal nanoparticle-poly(3,4-ethylenedioxythiophene) (LMNP-PEDOT) are added as multifunctional soft fillers.

View Article and Find Full Text PDF

In the quest for an ideal wound healing material, human amniotic membrane (AM), tilapia skin collagen (TSC), and Centella asiatica (CA) have been studied separately for their healing potential. In this study, we formulated AM, TSC, and CA gel and studied their competency and wound healing efficacy in vivo. Gel was formulated using AM, TSC, CA, Carbopol 934, acrylic acid, glycerine, and triethanolamine and physicochemical properties e.

View Article and Find Full Text PDF

Ice-Confined Synthesis of Stacked Polymer Nanospheres as Osmotic Power Generation Membranes.

Nano Lett

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Osmotic power extracts electricity from salinity gradients and provides a viable route toward clean energy. To improve the energy conversion efficiency, common strategies rely on fabricating precisely controlled nanopores to meet the requirements of high ionic conductivity and selectivity. We report ion transport through the free-volume networks in stacked polymer nanospheres for osmotic power harvesting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!