A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray. | LitMetric

Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray.

J Colloid Interface Sci

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576 Singapore.

Published: January 2008

A co-axial electrospray process was developed to encapsulate protein-based drugs in biodegradable polymeric microparticles eliminating the key problem faced by other conventional methods of protein encapsulation--the primary emulsion being a major cause for protein denaturation and aggregation. Bovine serum albumin (BSA) and lysozyme were chosen as model protein drugs for this study. Scanning electron microscopy observation of the morphology of particles showed spherical microparticles of several microns could be achieved. In vitro release profiles measured using Micro-BCA assay indicated sustained release of proteins for more than 30 days. The results of circular dichroism suggested that the secondary structure of released BSA can be retained. The bioactivity of released lysozyme was found to be more than 90% which is higher than the values reported from most literatures. Therefore, co-axial electrospray could be a very promising approach to encapsulate biomacromolecules such as proteins, enzymes, DNA plasmids or living cells inside microparticles for controlled release drug delivery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2007.09.082DOI Listing

Publication Analysis

Top Keywords

co-axial electrospray
12
protein drugs
8
drugs biodegradable
8
encapsulation protein
4
microparticles
4
biodegradable microparticles
4
microparticles co-axial
4
electrospray co-axial
4
electrospray process
4
process developed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!