Characterization of the hydrophobicity of mesoporous silicas and clays with silica pillars by water adsorption and DRIFT.

J Colloid Interface Sci

Departamento de Química e Bioquímica da Faculdade de Ciências de Lisboa, Centro de Química e Bioquímica, Edifício C8, Campo Grande, Lisboa, Portugal.

Published: January 2008

The hydrophobic-hydrophilic properties of a solid are related to the material chemistry and, often, these properties are relevant to the applications of a particular material. Contrarily to what happens with other properties, such as specific surface areas or pore volumes, the methodologies to ascertain on the hydrophilicity of a porous material are not well defined. In this work, we discuss and relate the information on the hydrophobicity degree obtained from water adsorption isotherms and from diffuse reflectance infrared Fourier transform (DRIFT), in a set of porous materials. The studied materials were mainly mesoporous solids, namely of MCM-41 and SBA-15 types, two xerogels and also different porous clays heterostructures. Both techniques were informative on the hydrophobic-hydrophilic properties of the studied samples, but the correlation between the information obtained by each technique was not straightforward. Water adsorption isotherms are much more sensitive to the differences of the studied materials than the DRIFT spectra. For silica-based mesoporous materials with similar surface chemistry, the water adsorption process and hence, the hydrophobic-hydrophilic properties, is mainly dependent on the pore diameters. However, water adsorption is much more sensitive to changes in the nature of the adsorbent surface than to changes in the pore diameter.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2007.09.035DOI Listing

Publication Analysis

Top Keywords

water adsorption
20
hydrophobic-hydrophilic properties
12
adsorption isotherms
8
studied materials
8
water
5
adsorption
5
properties
5
characterization hydrophobicity
4
hydrophobicity mesoporous
4
mesoporous silicas
4

Similar Publications

We develop a technology based on competitive adsorption between drug molecules and water, specifically designed to address the critical issue of poor drug solubility. By specially engineering silica nanosurfaces with ultrahigh densities of silanol, we significantly enhance their affinity for both drug molecules and water, with a notably greater increase in water affinity. Such surfaces can effectively adsorb a variety of drug molecules under dry conditions.

View Article and Find Full Text PDF

Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.

View Article and Find Full Text PDF

Switching CO2 Electroreduction toward C2+ Products and CH4 by Regulate the Protonation and Dimerization in Platinum/Copper Catalysts.

Angew Chem Int Ed Engl

January 2025

Beijing Institute of Technology, Research Center of Materials Science, School of Materials Science and Engineering, No.5 South Street of Zhongguancun, Haidian District, 100081, Beijing, CHINA.

Copper (Cu)-based catalysts exhibit distinctive performance in the electrochemical CO2 reduction reaction (CO2RR) with complex mechanism and sophisticated types of products. The management of key intermediates *CO and *H is a necessary factor for achieving high product selectivity, but lack of efficient and versatile strategies. Herein, we designed Pt modified Cu catalysts to effectively modulate the competitive coverage of those intermediates.

View Article and Find Full Text PDF

With the rapid development of modern industry, traditional lubricants often require a variety of additives to be used in conjunction with each other, which not only increases the cost but also causes a waste of resources. Therefore, the development of a lubricant additive with both a dyeing function and an antiwear and friction reduction performance can more effectively meet the industrial needs. Cerium sulfide (CeS), with its excellent photostability, weather resistance, thermal stability, and nontoxicity, shows great potential as an environmentally friendly pigment.

View Article and Find Full Text PDF

The design of well-engineered bifunctional electrocatalysts is crucial for achieving durable and efficient performance in overall water splitting. In this study, Ru-doped FeMn-MOF-74 itself has Ru sites and generates FeMnOOH under catalytic conditions, forming dual active sites for overall water splitting. Density functional theory (DFT) calculations demonstrate that the Ru dopants exhibit optimized binding strength for H* and enhanced hydrogen evolution reaction (HER) performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!