Background: Both in vivo and postmortem studies suggest that oligodendrocyte and myelination alterations are present in individuals with schizophrenia. However, it is unclear whether prolonged treatment with antipsychotic medications contributes to these disturbances. We recently reported that chronic exposure of macaque monkeys to haloperidol or olanzapine was associated with a 10%-18% lower glial cell number in the parietal grey matter. Consequently, in this study we sought to determine whether the lower glial cell number was due to fewer oligodendrocytes as opposed to lower numbers of astrocytes.

Methods: With fluorescent immunocytochemical techniques, we optimized the visualization of each cell type throughout the entire thickness of tissue sections, while minimizing final tissue shrinkage. As a result, we were able to obtain robust stereological estimates of total oligodendrocyte and astrocyte numbers in the parietal grey matter with the optical fractionator method.

Results: We found a significant 20.5% lower astrocyte number with a non-significant 12.9% lower oligodendrocyte number in the antipsychotic-exposed monkeys. Similar effects were seen in both the haloperidol and olanzapine groups.

Conclusions: These findings suggest that studies investigating glial cell alterations in schizophrenia must take into account the effect of antipsychotic treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2386415PMC
http://dx.doi.org/10.1016/j.biopsych.2007.08.018DOI Listing

Publication Analysis

Top Keywords

glial cell
12
macaque monkeys
8
haloperidol olanzapine
8
lower glial
8
cell number
8
parietal grey
8
grey matter
8
lower
5
chronic antipsychotic
4
antipsychotic exposure
4

Similar Publications

Colorectal cancer (CRC) is one of the most common cancers worldwide and inflammation is believed to play an important role in CRC. In this study, we comprehensively analyzed the causal association between 91 circulating inflammatory cytokines and the risk of CRC using Mendelian randomization (MR). Based on genome-wide association study summary statistics, we examined the causal effects of 91 circulating inflammatory cytokines on CRC.

View Article and Find Full Text PDF

In light of the increasing importance for measuring myelin ratios - the ratio of axon-to-fiber (axon + myelin) diameters in myelin internodes - to understand normal physiology, disease states, repair mechanisms and myelin plasticity, there is urgent need to minimize processing and statistical artifacts in current methodologies. Many contemporary studies fall prey to a variety of artifacts, reducing study outcome robustness and slowing development of novel therapeutics. Underlying causes stem from a lack of understanding of the myelin ratio, which has persisted more than a century.

View Article and Find Full Text PDF

Myelination is a key biological process wherein glial cells such as oligodendrocytes wrap myelin around neuronal axons, forming an insulative sheath that accelerates signal propagation down the axon. A major obstacle to understanding myelination is the challenge of visualizing and reproducibly quantifying this inherently three-dimensional process in vitro. To this end, we previously developed artificial axons (AAs), a biocompatible platform consisting of 3D-printed hydrogel-based axon mimics designed to more closely recapitulate the micrometer-scale diameter and sub-kilopascal mechanical stiffness of biological axons.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment.

View Article and Find Full Text PDF

NOTCH3 Mutation Causes Glymphatic Impairment and Promotes Brain Senescence in CADASIL.

CNS Neurosci Ther

January 2025

Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.

Aims: The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.

Methods: We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!