SyrC, a component of the multienzyme system of syringomycin biosynthesis, has been shown to shuttle Thr/4-Cl-Thr between the thiolation domains SyrB1-T1 and SyrE-T8,9 by transiently linking it to Cys224 in the enzyme active site. We present data on the structure-function relationship in vivo of this protein and an in silico model of its three-dimensional structure. The biosynthetic activity of SyrC was not influenced when either Asp348 or His376 that together with Cys224 form a putative catalytic triad, were replaced with Ala, but it was abolished by the exchange Cys224 with Ser. The presence of the FLAG peptide on either the N- or C-terminus of the protein did not affect activity, whereas the deletion of the first 16 amino acids at the N-terminus or the insertion of Maltose Binding Protein abolished the production of syringomycin. We present the model of the three-dimensional structure of SyrC suggesting a homodimeric structure for the protein and biochemical data that are supportive of this model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2007.09.116DOI Listing

Publication Analysis

Top Keywords

model three-dimensional
8
three-dimensional structure
8
mutational analysis
4
analysis homology
4
homology modelling
4
syrc
4
modelling syrc
4
syrc aminoacyltransferase
4
aminoacyltransferase biosynthesis
4
biosynthesis syringomycin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!