Caspase-2 cleaves DNA fragmentation factor (DFF45)/inhibitor of caspase-activated DNase (ICAD).

Arch Biochem Biophys

Research Center for Proteineous Materials (RCPM), Department of Bio-materials Engineering, Chosun University, Gwangju 501-759, Republic of Korea.

Published: December 2007

To investigate the signal transduction pathway of caspase-2, cell permeable Tat-reverse-caspase-2 was constructed, characterized and utilized for biochemical and cellular studies. It could induce the cell death as early as 2h, and caspase-2-specific VDVADase activity but not other caspase activities including DEVDase and IETDase. Interestingly, nuclear DNA fragmentation occurred and consistently DNA fragmentation factor (DFF45)/Inhibitor of caspase-activated DNase (ICAD) was cleaved inside the cell as well as in vitro, suggesting a role of caspase-2 in nuclear DNA fragmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2007.09.007DOI Listing

Publication Analysis

Top Keywords

dna fragmentation
16
fragmentation factor
8
factor dff45/inhibitor
8
dff45/inhibitor caspase-activated
8
caspase-activated dnase
8
dnase icad
8
nuclear dna
8
caspase-2 cleaves
4
dna
4
cleaves dna
4

Similar Publications

Peptide mapping analysis of synthetic semaglutide and liraglutide for generic development of drugs originating from recombinant DNA technology.

J Pharm Biomed Anal

January 2025

College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea. Electronic address:

Semaglutide and liraglutide are long-acting glucagon-like peptide-1 receptor agonists used to treat type-2 diabetes and obesity. Recent advances in peptide synthesis and analytical technologies have enabled the development of synthetic generic peptide for reference listed drugs (RLD) originating from recombinant DNA (rDNA) technology. Since the original semaglutide and liraglutide were produced through rDNA technology, there has been great interest in developing their synthetic peptides as generic versions of the original drugs.

View Article and Find Full Text PDF

Microfluidic purification of genomic DNA.

Proc Natl Acad Sci U S A

January 2025

Department of Chemical Engineering, University of Florida, Gainesville, FL 32611.

We describe a microfluidic device to extract DNA from a cell lysate, without the need for centrifuges, magnetic beads, or gels. Instead, separation is driven by transverse migration of DNA, which occurs when a polyelectrolyte solution flowing through a microfluidic channel is subjected to an electric field. The coupling of the weak shearing with the axial electric field is highly selective for long, flexible, charged molecules, of which DNA is the sole example in a typical cell lysate.

View Article and Find Full Text PDF

Background: Hemodynamic alterations in the spermatic vein are implicated in infertility among patients with varicocele (VC). Contrast-enhanced ultrasound (CEUS), a powerful tool for hemodynamic analysis, remains unexplored for VC. This study aimed to demonstrate the feasibility of using CEUS to evaluate spermatic vein hemodynamics in patients with VC and establish a clear correlation between specific hemodynamic patterns and impaired semen parameters.

View Article and Find Full Text PDF

The current study aimed to assess the preventive effects of aqueous leaf extract of Pistacia lentiscus (ALEPL) against Oxaliplatin (OXA)-induced DNA damage, hepatic injury, and oxidative stress. The in vitro cytotoxic and genotoxic effects of OXA and ALEPL on HCT116 colon cancer cells were evaluated using the MTT (Tetrazolium salt reduction) assay and comet assay. The in vivo study involved 24 female NMRI (Naval Medical Research Institute) mice that were equally divided into four groups as follows: Control group, ALEPL-treated group (100 mg/kg), OXA-treated group (7 mg/kg), and ALEPL-treated group (100mg/kg) + OXA (7mg/kg).

View Article and Find Full Text PDF

Artificial intelligence and machine learning in cell-free-DNA-based diagnostics.

Genome Res

January 2025

Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China;

The discovery of circulating fetal and tumor cell-free DNA (cfDNA) molecules in plasma has opened up tremendous opportunities in noninvasive diagnostics such as the detection of fetal chromosomal aneuploidies and cancers and in posttransplantation monitoring. The advent of high-throughput sequencing technologies makes it possible to scrutinize the characteristics of cfDNA molecules, opening up the fields of cfDNA genetics, epigenetics, transcriptomics, and fragmentomics, providing a plethora of biomarkers. Machine learning (ML) and/or artificial intelligence (AI) technologies that are known for their ability to integrate high-dimensional features have recently been applied to the field of liquid biopsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!