Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200703399DOI Listing

Publication Analysis

Top Keywords

formation edge-sharing
4
edge-sharing bo4
4
bo4 tetrahedra
4
tetrahedra high-pressure
4
high-pressure borate
4
borate hp-nib2o4
4
formation
1
bo4
1
tetrahedra
1
high-pressure
1

Similar Publications

Transition-metal layered double hydroxides are widely utilized as electrocatalysts for the oxygen evolution reaction (OER), undergoing dynamic transformation into active oxyhydroxides during electrochemical operation. Nonetheless, our understanding of the non-equilibrium structural changes that occur during this process remains limited. In this study, utilizing in situ energy-dispersive X-ray absorption spectroscopy and machine learning analysis, we reveal the occurrence of deprotonation and elucidate the role of incorporated iron in facilitating the transition from nickel-iron layered double hydroxide (NiFe LDH) into its active oxyhydroxide.

View Article and Find Full Text PDF
Article Synopsis
  • Tetrahedral, pyramidal, and octahedral metal-oxygen coordinated ligands are key to metal-oxide structures, with their behavior during electrochemical oxidation being critical yet underexplored.
  • A study links oxygen-evolving performance to structural properties of model oxides, finding that pyramidal structures are more vulnerable to hydroxide (OH) attacks, leading to transformation into active amorphous CoOOH.
  • The research proposes an ion-tuning strategy to improve both activity and stability in metal oxides, addressing the challenge of balancing performance and structural durability in electrochemical applications.
View Article and Find Full Text PDF

Intense research efforts on transition metal chalcogenides (oxides and sulfides), pnictides (nitrides and phosphides), and fluorides have demonstrated the complex, intertwined effects of structural and chemical changes on their electrochemical response leading to intercalation, conversion, or displacement reactions when reacting with lithium. Prior efforts largely left halides unexplored due to their heightened solubility in classical liquid electrolytes. In this work, we employ superconcentrated electrolytes to demonstrate the composition- and structure-dependent electrochemical reactivity of AMCl compounds (A = Li or Na and M = Cr, Mn, Fe, and Co).

View Article and Find Full Text PDF

Buckling cluster-based H-bonded icosahedral capsules and their propagation to a robust zeolite-like supramolecular framework.

Nat Commun

October 2024

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China.

Hydrogen-bonded assembly of multiple components into well-defined icosahedral capsules akin to virus capsids has been elusive. In parallel, constructing robust zeolitic-like cluster-based supramolecular frameworks (CSFs) without any coordination covalent bonding linkages remains challenging. Herein, we report a cluster-based pseudoicosahedral H-bonded capsule Cu, which is buckled by the self-organization of judiciously designed constituent copper clusters and anions.

View Article and Find Full Text PDF

Organic phosphates (OP) are important nutrient components for living cells in natural environments, where they readily interact with ubiquitous iron phases such as hydrous ferric oxide, ferrihydrite (FHY). FHY partakes in many key bio(geo)chemical reactions including iron-mediated carbon storage in soils, or iron-storage in living organisms. However, it is still unknown how OP affects the formation, structure and properties of FHY.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!