AI Article Synopsis

  • DEC1, a potential tumor suppressor gene, is significantly downregulated in esophageal carcinoma, with absence in all tested ESCC cell lines and a majority of tumor samples from high-risk regions in China.
  • In experiments, DEC1 expression led to smaller cell colonies but did not notably increase colony numbers in 3D cultures, suggesting its role in limiting colony growth rather than preventing cell proliferation.
  • Further analysis identified three candidate genes (TFPI-2, GDF15, DUSP6) impacted by DEC1 that are also downregulated in tumors, indicating their possible involvement in tumor growth and progression in esophageal cancer.

Article Abstract

Previous studies showed that expression of the novel candidate tumor suppressor gene, DEC1 (Deleted in Esophageal Cancer 1), is reduced in esophageal carcinoma and suppresses cancer cell growth in vitro and tumor growth in vivo in nude mice. This study shows that DEC1 gene expression was downregulated in 100% of 16 esophageal squamous cell carcinoma (ESCC) cell lines and 52 and 45%, respectively, of esophageal tumor specimens from Hong Kong and a high-risk ESCC region of Henan, China. Using epitope tagging, the DEC1 protein was localized to both the cytoplasm and nucleus of the cell. In 3D Matrigel culture, no significant difference in colony numbers formed was observed for DEC1 stable transfectants, as compared to vector-alone transfectant controls. However, significantly smaller colony sizes were observed for the DEC1 transfectants. In in vitro cell migration, invasion and soft agar assays of DEC1 transfectants, only the soft agar assay showed statistically significant differences in colony numbers with the vector-alone controls, indicating that DEC1 may be involved in anchorage-independent cell growth. In addition, the global gene expression affected by DEC1 in tumor-suppressive stable transfectants was investigated using cDNA oligonucleotide microarray hybridization. Three candidate genes, TFPI-2, GDF15 and DUSP6, were identified through this approach; they are downregulated in tumor segregants of DEC1 stable transfectants, ESCC cell lines and esophageal tumors and have a potential role in tumor growth and progression. These studies show that DEC1 is involved in esophageal cancer development and help elucidate its functional role in tumor development.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.23144DOI Listing

Publication Analysis

Top Keywords

gene expression
12
stable transfectants
12
dec1
11
candidate tumor
8
tumor suppressor
8
suppressor gene
8
gene dec1
8
global gene
8
esophageal carcinoma
8
esophageal cancer
8

Similar Publications

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance.

View Article and Find Full Text PDF

ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC.

View Article and Find Full Text PDF

Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.

View Article and Find Full Text PDF

Background: Fracture disrupts the integrity and continuity of the bone, leading to symptoms such as pain, tenderness, swelling, and bruising. Rhizoma Musae is a medicinal material frequently utilized in the Miao ethnic region of Guizhou Province, China. However, its specific mechanism of action in treating fractures remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!