Lipozyme TL IM catalyses the deacylation of 4-C-acyloxymethyl-3,5-di-O-acyl-1,2-O-(1-methylethylidene)-beta-L-threo-pentofuranose to form 3,5-di-O-acyl-4-C-hydroxymethyl-1,2-O-(1-methylethylidene)-alpha-D-xylo-pentofuranose in a highly selective and efficient manner. The rate of lipase-catalyzed deacylation of tributanoyl furanose is 2.3 times faster than the rate of deacylation of the triacetyl furanose derivative. In order to confirm the structure of the lipase-catalyzed deacylated product, it was converted to a bicyclic sugar derivative, which can be used for the synthesis of bicyclic nucleosides of importance in the development of novel antisense and antigene oligonucleotides. Further, it has been established that the monohydroxy product of the lipase-catalyzed reaction is the result of selective deacylation of the 4-C-acyloxymethyl function in the substrate and not of any acyl migration process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b711455a | DOI Listing |
J Pestic Sci
November 2024
Syngenta, Bioscience, Jealott's Hill Research Centre.
Flometoquin (FLO) is a novel quinoline-type insecticide that elicits a quick knock-down effect against target pests; however, its mode of action (MoA) remains unknown. In this study, we investigated its MoA systematically, using varying biochemical techniques. Since FLO-treated insects exhibited symptoms similar to those induced by respiratory inhibitors, we examined the effect of FLO on respiratory enzyme complexes using mitochondria isolated from different insects (housefly, diamondback moth, and western flower thrips).
View Article and Find Full Text PDFChem Sci
December 2024
LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.
View Article and Find Full Text PDFCell Biosci
December 2024
The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Background: Aberrant interplay between epigenetic reprogramming and metabolic rewiring events contributes to bladder cancer progression and metastasis. How the deacetylase Sirtuin-6 (SIRT6) regulates glycolysis and lactate secretion in bladder cancer remains poorly defined. We thus aimed to study the biological functions of SIRT6 in bladder cancer.
View Article and Find Full Text PDFJ Biochem
December 2024
Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako Saitama 351-0198, Japan.
Glycosylphosphatidylinositol (GPI) anchoring is a conserved post-translational modification in eukaryotes. This modification allows acceptor proteins to be expressed at the cell surface as GPI-anchored proteins (GPI-APs), which play critical roles in various biological processes. It has been proposed that remodeling of GPI after transferring acceptor proteins, including the PGAP1-dependent deacylation of GPI-inositol, functions as a checkpoint for transporting mature GPI-APs from the ER to the Golgi.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand. Electronic address:
Chitosan is a deacylated derivative of chitin, which is a naturally occurring polysaccharide found in the shells of crustaceans. Chitosan's biocompatibility, physicochemical and mechanical properties qualify it as an excellent candidate for biomedical and pharmaceutical applications. Furthermore, the nanoengineering of chitosan enhances its functional and desirable properties for various applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!