ortho-Lithiation of cyclic aryl sulfonamides in the presence of phosphoryl chloride provides a very simple entry to fused polycyclic sultams (benzothiazolines and naphthathiazolines).

Download full-text PDF

Source
http://dx.doi.org/10.1039/b708967hDOI Listing

Publication Analysis

Top Keywords

one-pot synthesis
4
synthesis benzothiazolines
4
benzothiazolines napthathiazolines
4
napthathiazolines cascade
4
cascade ortho-lithiation
4
ortho-lithiation cyclisation
4
cyclisation elimination
4
elimination n-arylsulfonyl
4
n-arylsulfonyl lactams
4
lactams ortho-lithiation
4

Similar Publications

Synthesis of 1,4-Diketones from Esters Enabled by a Tetraborylethane Reagent.

Org Lett

January 2025

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China.

A modular synthesis method for 1,4-diketones has been developed. Utilizing inexpensive carboxylic acid esters as carbonyl sources and tetraborylethane () as a nucleophilic reagent, a one-pot strategy for constructing two C-C bonds was established. Notably, this reaction proceeds without the involvement of transition metals and exhibits excellent functional group compatibility.

View Article and Find Full Text PDF

The radiotracer [F]JK-PSMA-7, a prostate cancer imaging agent for positron emission tomography (PET), was previously synthesized by indirect radiofluorination using an F-labeled active ester as a prosthetic group, which had to be isolated and purified before it could be linked to the pharmacologically active Lys-urea-Glu motif. Although this procedure could be automated on two-reactor modules like the GE TRACERLab FX2N (FXN) to afford the tracer in modest radiochemical yields (RCY) of 18-25%, it is unsuitable for cassette-based systems with a single reactor. To simplify implementation on an automated synthesis module, the radiosynthesis of [F]JK-PSMA-7 was devised as a one-pot, two-step reaction.

View Article and Find Full Text PDF

Background: In the era of resistance, the design and search for new "small" molecules with a narrow spectrum of activity that target a protein or enzyme specific to a certain bacterium with high selectivity and minimal side effects remains an urgent problem of medicinal chemistry. In this regard, we developed and successfully implemented a strategy for the search for new hybrid molecules, namely, the not broadly known [2-(3-R-1-[1,2,4]-triazol-5-yl)phenyl]amines. They can act as "building blocks" and allow for the introduction of certain structural motifs into the desired final products in order to enhance the antistaphylococcal effect.

View Article and Find Full Text PDF

A concise, transition metal-free four-step synthetic pathway has been developed for the synthesis of tetracyclic heterosteroidal compounds, 14-aza-12-oxasteroids, starting from readily available 2-naphthol analogues. After conversion of 2-naphthols to 2-naphthylamines by the Bucherer reaction, subsequent selective C-acetylation was achieved via the Sugasawa reaction and reduction of the acetyl group using borohydride, which resulted into the corresponding amino-alcohols. The naphthalene-based amino-alcohols underwent double dehydrations and double intramolecular cyclization with oxo-acids leading to one-pot formation of a C-N bond, a C-O bond and an amide bond in tandem, to generate two additional rings completing the steroidal framework.

View Article and Find Full Text PDF

In this study, we present the HOAc-catalyzed selective cleavage of the C=C double bond of enaminones, enabling the formation of a new C-N bond and a new C=N bond for the one-pot synthesis of 2-substituted 3,4-dihydroquinazolines directly from ynones and 2-(aminomethyl)anilines. This method operates in ethanol under transition-metal-free and oxidant-free conditions, offering a sustainable and efficient approach for the synthesis of 3,4-dihydroquinazolines with broad functional group tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!