Past studies have shown that activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK is a common cause for resistance of melanoma cells to death receptor-mediated or mitochondria-mediated apoptosis. We report in this study that inhibition of the MEK/ERK pathway also sensitizes melanoma cells to endoplasmic reticulum (ER) stress-induced apoptosis, and this is mediated, at least in part, by caspase-4 activation and is associated with inhibition of the ER chaperon glucose-regulated protein 78 (GRP78) expression. Treatment with the ER stress inducer tunicamycin or thapsigargin did not induce significant apoptosis in the majority of melanoma cell lines, but resistance to these agents was reversed by the MEK inhibitor U0126 or MEK1 small interfering RNA (siRNA). Induction of apoptosis by ER stress when MEK was inhibited was caspase dependent with caspase-4, caspase-9, and caspase-3 being involved. Caspase-4 seemed to be the apical caspase in that caspase-4 activation occurred before activation of caspase-9 and caspase-3 and that inhibition of caspase-4 by a specific inhibitor or siRNA blocked activation of caspase-9 and caspase-3, whereas inhibition of caspase-9 or caspase-3 did not inhibit caspase-4 activation. Moreover, overexpression of Bcl-2 inhibited activation of caspase-9 and caspase-3 but had minimal effect on caspase-4 activation. Inhibition of MEK/ERK also resulted in down-regulation of GRP78, which was physically associated with caspase-4, before and after treatment with tunicamycin or thapsigargin. In addition, siRNA knockdown of GRP78 increased ER stress-induced caspase-4 activation and apoptosis. Taken together, these results seem to have important implications for new treatment strategies in melanoma by combinations of agents that induce ER stress and inhibitors of the MEK/ERK pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-07-2047DOI Listing

Publication Analysis

Top Keywords

caspase-4 activation
20
caspase-9 caspase-3
20
melanoma cells
12
activation caspase-9
12
activation
9
caspase-4
9
cells endoplasmic
8
endoplasmic reticulum
8
reticulum stress-induced
8
stress-induced apoptosis
8

Similar Publications

Intimal hyperplasia (IH) remains a significant clinical problem, causing vascular intervention failure. This study aimed to elucidate whether gangliosides GA2 accumulated in atherosclerotic mouse aortae and plasma promote the development of IH. We identified that GA2 was remarkably accumulated in both artery and plasma of atherosclerotic patients and mice.

View Article and Find Full Text PDF

Background: Periodontitis and diabetes are chronic diseases where inflammation plays a central role, with each condition exacerbating the other. Pyroptosis, an inflammatory form of programmed cell death, is implicated in periodontitis and diabetes. The activation of gasdermin D (GSDMD), a key mediator of pyroptosis, promotes cytokine release and perpetuates tissue destruction in both.

View Article and Find Full Text PDF

Zinc homeostasis regulates caspase activity and inflammasome activation.

PLoS Pathog

December 2024

Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.

Inflammasome activation drives pyroptotic cell death and the release of inflammatory cytokines, and many diseases involve its overactivation. Zinc is essential for all organisms as a trace element, but its functions in innate immunity remain undefined. Here, we reported that Zn2+ inhibits caspase-1 to hinder inflammasome activation.

View Article and Find Full Text PDF

A complex of NLRP3 with caspase-4 is essential for inflammasome activation by Tannerella forsythia infection.

Int Immunol

December 2024

Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.

Periodontitis, a chronic inflammatory disease of periodontal tissue, is often associated with a group of pathogenic bacteria known as the "red complex," including Tannerella forsythia (T. forsythia). Previous papers showed that T.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) mediated caspases-4 (humans) and caspase-11 (rodent) (caspase-4/11) signaling can cause maturation of inflammatory cytokine IL-1β and cellular pyroptosis in the macrophages through guanylate-binding proteins (GBPs). However, how caspase-4/11s bind with GBPs together to activate caspase-4/11 by LPS remains elusive. We here found that BA derivatives from gut microbiota can regulate sensitivity of macrophages to LPS and Gram-negative bacteria through .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!