AI Article Synopsis

  • Carotid endarterectomy (CEA) and carotid artery stenting are key treatments for atherosclerotic disease, but early restenosis due to neointimal hyperplasia poses challenges.
  • Researchers hypothesized that administering ketorolac tromethamine (Toradol), a nonsteroidal anti-inflammatory drug, could reduce oxidative stress and thus lower intimal hyperplasia in a rat model of CEA.
  • The study found that both doses of Toradol significantly decreased platelet activity, oxidative stress markers, and intimal hyperplasia without increasing bleeding, suggesting its potential effectiveness in improving surgical outcomes.

Article Abstract

Carotid endarterectomy (CEA) and more recently carotid artery stenting are the treatments of choice for atherosclerotic disease of the extracranial carotid arteries; however, early restenosis caused by neointimal hyperplasia confounds surgical therapy. Oxidative stress has been implicated in the progression of intimal hyperplasia. The authors hypothesized that ketorolac tromethamine (Toradol), a nonsteroidal antiinflammatory drug that is a potent cyclooxygenase inhibitor, would decrease oxidative stress and thereby reduce intimal hyperplasia in a rat CEA model. Twenty-nine male Sprague-Dawley rats underwent CEA and were divided into 3 treatment groups as follows: (1) control (placebo), (2) 7.5 mg/kg Toradol, and (3) 10 mg/kg Toradol. Toradol treatment began 2 days before CEA and continued for 2 weeks. Two weeks after endarterectomy, carotid arteries were fixed, harvested, and examined for platelet activity (platelet reactive units), oxidative stress (malondialdehyde and glutathione), and intimal hyperplasia (measured as percentage of luminal stenosis). Platelet activity, malondialdehyde and glutathione, and intimal hyperplasia were all significantly lowered in both 7.5- and 10-mg/kg doses of Toradol versus control. Toradol given daily beginning 2 days before CEA and ending 2 weeks after the procedure was effective at significantly reducing platelet activity, oxidative stress, and intimal hyperplasia development in the rat without any increase in bleeding. Although the mechanism of action of this reduction is not completely understood, one possible explanation may be through the inhibition of reactive oxygen species production.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1538574407304506DOI Listing

Publication Analysis

Top Keywords

intimal hyperplasia
24
oxidative stress
16
platelet activity
12
hyperplasia rat
8
carotid endarterectomy
8
carotid arteries
8
mg/kg toradol
8
days cea
8
malondialdehyde glutathione
8
glutathione intimal
8

Similar Publications

Cardiovascular diseases (CVDs) are the foremost cause of mortality worldwide, with incidence and mortality rates persistently climbing despite extensive research efforts. Innovative therapeutic approaches are still needed to extend patients' lives and preserve their health. In the present study, novel supramolecular nanomedicine with both nitric oxide (NO) and antioxidant releasing ability was developed to enhance therapeutic efficacy against vascular injuries.

View Article and Find Full Text PDF
Article Synopsis
  • Intimal hyperplasia (IH) is a major issue in vascular interventions, and this study investigates the role of gangliosides GA2 in its development.
  • Researchers found that GA2 levels were significantly higher in atherosclerotic mouse aortae and plasma, and injecting GA2 worsened IH by interacting with macrophages.
  • The study reveals that GA2 activates caspase-4 and promotes pyroptosis in macrophages, suggesting a new mechanism for IH that could lead to potential diagnostic and treatment strategies.
View Article and Find Full Text PDF

Astragali Radix-Angelicae Sinensis Radix inhibits the activation of vascular adventitial fibroblasts and vascular intimal proliferation by regulating the TGF-β1/Smad2/3 pathway.

J Ethnopharmacol

December 2024

School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Bachelor Road, Hanpu Science and Education Park, Yuelu District, 410208Changsha City, Hunan Province, China; Hunan Key Laboratory of Integrated Chinese and Western Medicine for Prevention and Treatment of Heart and Brain Diseases, 410208, Changsha, China. Electronic address:

Ethnopharmacological Relevance: Astragali Radix-Angelicae Sinensis Radix is an important traditional Chinese medicine used for the treatment of cardiovascular diseases. Our previous studies have shown that Astragali Radix-Angelicae Sinensis Radix can inhibit vascular intimal hyperplasia and improve the blood vessel wall's ECM deposition, among which six main active components can be absorbed into the blood, suggesting that these components may be the main pharmacodynamic substances of Astragali Radix-Angelicae Sinensis Radix against vascular intimal hyperplasia.

Aim Of The Study: A mouse model of atherosclerosis was used to study the relationship between the anti-intimal hyperplasia effect of Astragali Radix-Angelicae Sinensis Radix and the inhibition of VAF activation and ECM synthesis.

View Article and Find Full Text PDF

Synthetic vascular grafts are promising conduits for small caliber arteries. However, due to restenosis caused by intimal hyperplasia, they cannot keep long patency in vivo. In this work, through single cell RNA sequencing, we found that thrombospondin-1 (THBS1) was highly expressed in the regenerated smooth muscle cells (SMCs) in electrospun polycaprolactone (PCL) vascular grafts.

View Article and Find Full Text PDF

Background: Endovascular recanalization with venous stenting is the preferred treatment for iliofemoral venous obstruction. We reviewed our institutional experience and mid-term outcomes with endovascular therapy for iliofemoral venous obstruction using the Venovo Self-expanding Venous Stent (BARD Peripheral Vascular, Inc., Tempe, AZ, USA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!