One of the major hurdles of cellular therapies for the treatment of liver failure is the low availability of functional human hepatocytes. While embryonic stem (ES) cells represent a potential cell source for therapy, current methods for differentiation result in mixed cell populations or low yields of the cells of interest. Here we describe a rapid, direct differentiation method that yields a homogeneous population of endoderm-like cells with 95% purity. Mouse ES cells cultured on top of collagen-sandwiched hepatocytes differentiated and proliferated into a uniform and homogeneous cell population of endoderm-like cells. The endoderm-like cell population was positive for Foxa2, Sox17, and AFP and could be further differentiated into hepatocyte-like cells, demonstrating hepatic morphology, functionality, and gene and protein expression. Incorporating the hepatocyte-like cells into a bioartificial liver device to treat fulminant hepatic failure improved animal survival, thereby underscoring the therapeutic potential of these cells.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.06-7764comDOI Listing

Publication Analysis

Top Keywords

hepatocyte-like cells
12
cells
10
embryonic stem
8
stem cells
8
treatment liver
8
liver failure
8
population endoderm-like
8
endoderm-like cells
8
cell population
8
homogeneous differentiation
4

Similar Publications

Developments in basic stem cell biology have paved the way for technology translation in human medicine. An exciting prospective use of stem cells is the ex vivo generation of hepatic and pancreatic endocrine cells for biomedical applications. This includes creating novel models 'in a dish' and developing therapeutic strategies for complex diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and diabetes.

View Article and Find Full Text PDF

Protocol for generating liver metastasis microtissues to decipher cellular interactions between metastatic intestinal cancer and liver tissue.

STAR Protoc

January 2025

Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands. Electronic address:

Cell competition is a quality control mechanism that promotes elimination of suboptimal cells relative to fitter neighbors. Cancer cells exploit these mechanisms for expansion, but the underlying molecular pathways remain elusive. Here, we present a protocol for generating matrix-free microtissues recapitulating cellular interactions between intestinal cancer and hepatocyte-like cells using microscopy or transcriptomics/proteomics.

View Article and Find Full Text PDF

Obtaining stable hepatic cells in culture poses a significant challenge for liver studies. Bearing this in mind, an optimized method is depicted utilizing human induced pluripotent stem cells (hiPSCs) to generate 3D cultures of human hepatic organoids (HHOs). The utilization of HHOs offers a valuable approach to understanding liver development, unraveling liver diseases, conducting high-throughput studies for drug development, and exploring the potential for liver transplantation.

View Article and Find Full Text PDF

Similar to the mammalian hepatocytes, oenocytes accumulate fat during fasting, but it is unclear how they communicate with the fat body, the major lipid source. Using a modified protocol for prolonged starvation, we show that knockdown (KD) of the sole delta 9 desaturase, Desat1 (SCD in mammals), specifically in oenocytes leads to more saturated lipids in the hemolymph and reduced triacylglycerol (TAG) storage in the fat body. Additionally, oenocytes with KD exhibited an accumulation of lipoproteins and actin filaments at the cortex, which decreased lipoproteins in the hemolymph.

View Article and Find Full Text PDF

Elevated cholesterol poses a significant cardiovascular risk, particularly in older women. The glucocorticoid receptor (GR), a crucial nuclear transcription factor that regulates the metabolism of virtually all major nutrients, harbors a still undefined role in cholesterol regulation. Here, we report that a coding single nucleotide polymorphism (SNP) in the gene encoding the GR, , associated with increased cholesterol levels in women according to UK Biobank and All Of Us datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!