Nonsteroidal anti-inflammatory drugs (NSAIDs) exert analgesic effects by inhibiting peripheral cyclooxygenases (COXs). It is now clear that these drugs also have central actions that include the modulation of descending control of spinal nociception from the midbrain periaqueductal gray (PAG). Descending control is a powerful determinant of the pain experience and is thus a potential target for analgesic drugs, including COX inhibitors. Noxious information from the periphery is conveyed to the spinal cord in A- and C-fiber nociceptors, which convey different qualities of the pain signal and have different roles in chronic pain. This in vivo study used different rates of skin heating to preferentially activate A- or C-heat nociceptors to further investigate the actions of COX inhibitors and prostaglandins in the PAG on spinal nociceptive processing. The results significantly advance our understanding of the central mechanisms underlying the actions of NSAIDs and prostaglandins by demonstrating that (1) in the PAG, it is COX-1 and not COX-2 that is responsible for acute antinociceptive effects of NSAIDs in vivo; (2) these effects are only evoked from the opioid-sensitive ventrolateral PAG; and (3) prostaglandins in the PAG exert tonic facilitatory control that targets C- rather than A-fiber-mediated spinal nociception. This selectivity of control is of particular significance given the distinct roles of A- and C-nociceptors in acute and chronic pain. Thus, effects of centrally acting prostaglandins are pivotal, we suggest, to both the understanding of nociceptive processing and the development of new analgesic drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673041PMC
http://dx.doi.org/10.1523/JNEUROSCI.2586-07.2007DOI Listing

Publication Analysis

Top Keywords

spinal nociception
12
periaqueductal gray
8
descending control
8
analgesic drugs
8
cox inhibitors
8
chronic pain
8
prostaglandins pag
8
nociceptive processing
8
control
5
spinal
5

Similar Publications

PPARγ activation attenuates neonatal CRD-induced visceral pain sensitization and anxiety in male rats by alleviating oxidative stress.

BMC Gastroenterol

January 2025

Department of Anesthesiology, First Affiliated Hospital, Fujian Medical University, No. 20, Cha Zhong Road, Fuzhou, Fujian Province, People's Republic of China.

Background: Visceral pain sensitization and emotional reactions due to irritable bowel syndrome (IBS) occur frequently in the general population. Oxidative stress plays a crucial role in the pathogenesis of IBS. Previous studies have demonstrated that activation of peroxisome proliferator-activated receptor gamma (PPARγ) has analgesic effects.

View Article and Find Full Text PDF

Central projections of nociceptive input originating from the low back and limb muscle in rats.

Sci Rep

January 2025

Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Japan.

Since clinical features of chronic muscle pain originating from the low back and limbs are different (higher prevalence and broader/duller sensation of low back muscle pain than limb muscle pain), spinal and/or supraspinal projection of nociceptive information could differ between the two muscles. We tested this hypothesis using c-Fos immunohistochemistry combined with retrograde-labeling of dorsal horn (DH) neurons projecting to ventrolateral periaqueductal grey (vlPAG) or ventral posterolateral nucleus of the thalamus (VPL) by fluorogold (FG) injections into the vlPAG or VPL. C-Fos expression in the DH was induced by injecting 5% formalin into the multifidus (MF, low back) or gastrocnemius-soleus (GS, limb) muscle.

View Article and Find Full Text PDF

Background: While TRPA1 serves as a therapeutic target for nociceptive pain, its role in acute visceral pain induced by uterine cervical dilation (UCD) remains an enigma. This study aims to elucidate the upstream and downstream mechanisms of TRPA1 in the context of UCD-induced acute visceral pain.

Methods: The UCD rats were administered with SAH (inhibitor of the METTL3-METTL14 complex) via intrathecal tubing.

View Article and Find Full Text PDF

Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.

View Article and Find Full Text PDF

Action potential-independent spontaneous microdomain Ca transients-mediated continuous neurotransmission regulates hyperalgesia.

Proc Natl Acad Sci U S A

January 2025

Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China.

Neurotransmitters and neuromodulators can be released via either action potential (AP)-evoked transient or AP-independent continuous neurotransmission. The elevated AP-evoked neurotransmission in the primary sensory neurons plays crucial roles in hyperalgesia. However, whether and how the AP-independent continuous neurotransmission contributes to hyperalgesia remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!