Photoactivatable GFP resolves Drosophila mesoderm migration behaviour.

Development

The ARC Special Research Centre for the Molecular Genetics of Development and Molecular Genetics and Evolution Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia.

Published: November 2007

Mesoderm migration is a pivotal event in the early embryonic development of animals. One of the best-studied examples occurs during Drosophila gastrulation. Here, mesodermal cells invaginate, undergo an epithelial-to-mesenchymal transition (EMT), and spread out dorsally over the inner surface of the ectoderm. Although several genes required for spreading have been identified, our inability to visualise mesodermal cells in living embryos has left us to speculate about the cell rearrangements involved. Several mechanisms, such as chemotaxis towards a dorsally expressed attractant, differential affinity between mesodermal cells and the ectoderm, and convergent extension, have been proposed. Here we resolve the behaviour of Drosophila mesodermal cells in live embryos using photoactivatable-GFP fused to alpha-Tubulin (PAGFP-Tub). By photoactivating presumptive mesodermal cells before gastrulation, we could observe their migration over non-fluorescent ectodermal cells. We show that the outermost (outer) cells, which are in contact with the ectoderm, migrate dorsolaterally as a group but can be overtaken by more internal (inner) cells. Using laser-photoactivation of individual cells, we then show that inner cells adjacent to the centre of the furrow migrate dorsolaterally away from the midline to reach dorsal positions, while cells at the centre of the furrow disperse randomly across the mesoderm, before intercalating with outer cells. These movements are dependent on the FGF receptor Heartless. The results indicate that chemotactic movement and differential affinity are the primary drivers of mesodermal cell spreading. These characterisations pave the way for a more detailed analysis of gene function during early mesoderm development.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.005389DOI Listing

Publication Analysis

Top Keywords

mesodermal cells
20
cells
12
mesoderm migration
8
differential affinity
8
outer cells
8
migrate dorsolaterally
8
inner cells
8
centre furrow
8
mesodermal
6
photoactivatable gfp
4

Similar Publications

Single-cell proteomics (SCP) promises to revolutionize biomedicine by providing an unparalleled view of the proteome in individual cells. Here, we present a high-sensitivity SCP workflow named Chip-Tip, identifying >5,000 proteins in individual HeLa cells. It also facilitated direct detection of post-translational modifications in single cells, making the need for specific post-translational modification-enrichment unnecessary.

View Article and Find Full Text PDF

Purpose Of Review: To review evidence supporting human umbilical cord mesenchymal stem cells (UC-MSC) as an innovative model system advancing obesity precision medicine.

Recent Findings: Obesity prevalence is increasing rapidly and exposures during fetal development can impact individual susceptibility to obesity. UC-MSCs exhibit heterogeneous phenotypes associated with maternal exposures and predictive of child cardiometabolic outcomes.

View Article and Find Full Text PDF

Due to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells.

View Article and Find Full Text PDF

Glioblastoma (GB) is one of the most aggressive and treatment-resistant cancers due to its complex tumor microenvironment (TME). We previously showed that GB progression is dependent on the aberrant induction of chaperone-mediated autophagy (CMA) in pericytes (PCs), which promotes TME immunosuppression through the PC secretome. The secretion of extracellular matrix (ECM) proteins with anti-tumor (Lumican) and pro-tumoral (Osteopontin, OPN) properties was shown to be dependent on the regulation of GB-induced CMA in PCs.

View Article and Find Full Text PDF

Nitric oxide-sensitive guanylyl cyclase (NO-GC) is a heterodimeric enzyme with an α- and a β-subunit. In its active form as an αβ-heterodimer, NO-GC produces cyclic guanosine-3',5'-monophophate (cGMP) to regulate vasodilation and proliferation of vascular smooth muscle cells (VSMCs). In contrast to VSMCs, only a few studies reported on the expression of the NO-GC αβ-heterodimer in human pericytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!