Periodically corrugated structures play an important role in the field of vibration control and for designing structures with desired acoustic band gaps. Analytical solutions for corrugated plates are available for well-defined, smooth corrugations, such as sinusoidal corrugations that are not very common in the real world. Often corrugated plates are fabricated by cutting grooves at regular intervals in a flat plate. No analytical solution is available to predict the wave propagation behavior in such a periodically corrugated plate in which the equation of the plate surface changes periodically between a planar fiat surface and a nonplanar parabolic groove. This problem is solved here for steady-state case by a newly developed semianalytical technique called distributed point source method (DPSM), and the theoretical predictions are compared with the experimental results generated by reflecting a bounded 2.25 MHz ultrasonic beam by a fabricated corrugated plate. The main difference that is observed in the reflected beam profile from a flat plate and a corrugated plate is that the back-scattering effect is much stronger for the corrugated plate, and the forward reflection is stronger for the flat plate. The energy distribution inside the corrugated plate also shows backward propagation of the ultrasonic energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/tuffc.2007.470 | DOI Listing |
PLoS One
January 2025
Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, China.
Highway guardrails are critical safety infrastructure along roadways, designed to redirect vehicles back into their lanes and facilitate a gradual deceleration to a complete stop. Traditional highway steel guardrails exhibit significant limitations, including inadequate energy absorption, susceptibility to corrosion, and an increased risk of vehicles leaving the roadway during severe collisions. Furthermore, the production and transportation of these guardrails contribute to substantial carbon emissions and environmental pollution.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Structural Engineering, Faculty of Engineering, Mansoura University, Mansoura, Egypt.
Concrete-filled double-skin steel tubular (CFDST) columns have become widely utilized in building construction and bridges, thanks to their exceptional structural capabilities. Therefore, this study investigates the axial compressive behavior of square CFDST columns. The study aims to explore the influence of external and internal plate shapes (flat or corrugated plates) and different widths of internal steel tubes on the axial compressive behavior.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Civil Engineering, Beijing Jiaotong University, Haidian District, Beijing 100044, China.
Existing support systems for thermal pipeline trenches often fail to meet the specific needs of narrow strips, tight timelines, and short construction periods in urban environments. This study introduces a novel recyclable, non-embedded support system composed of corrugated steel plates, retractable horizontal braces, angle steel, and high-strength bolts designed to address these challenges. The system's effectiveness was validated through prototype testing and optimized using Abaqus finite element simulations.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland.
Recently, steel girders with sinusoidal corrugations have become increasingly popular compared to those with traditional flat webs. This paper presents the second part of the research on the application of corrugated plates with different sinusoidal profiles as webs in girders. Parametric studies have been carried out in both linear and nonlinear domains, based on a representative numerical model developed and validated by experimental results.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China.
Linear optical diffraction of light is a basic natural phenomenon subject to a long history study and it obeys the well-known reciprocity in transport. In this work we report observation of synergistic nonreciprocal linear and nonlinear diffraction of a Ti:sapphire femtosecond laser beam against a periodic poled lithium niobate (PPLN) thin plate nonlinear grating with a front surface corrugated with a shallow grating of a depth only 67 nm and a smooth back surface. A high peak power pump laser beam shining upon the geometrically asymmetric nonlinear grating from either the front surface and back surface will both cause significant second-order nonlinear (2nd-NL) Raman-Nath diffraction and Cerenkov radiation, in addition to apparent linear optical diffraction and modest third-order nonlinear (3rd-NL) spectral broadening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!