On the interactions of histone H4 and H4 peptides with DNA. Electrooptical, hydrodynamic and electron microscopy studies.

Biochimie

Instituto de Biología Fundamental, Universidad Autónoma de Barcelona and Consejo Superior de Investigaciones Sientificas, 171 Barcelona-26, Spain.

Published: November 2007

AI Article Synopsis

Article Abstract

The interactions of DNA with histone H4 and with its fragments N-H4 (1-84) and C-H4 (85-102) have been studied by using electrooptical techniques, viscosity and electron microscopy. Electron microscopy reveals that histone H4 induces a large folding of DNA molecules : this is in agreement with electrooptical measurements which indicate that, with the increase of their ratio, H4/DNA complexes undergo a gradual process of condensation. Viscosity measurements show that complexes at ratios up to 0.20-0.25 become more rigid as compared to DNA. It appears that C-H4, and not the N-H4 fragment, causes a great distorsion to the structure of DNA, accompanied by an increase of rigidity at ratios up to 0.20-0.25, as occurs for H4/DNA complexes. Electrooptical studies of C-H4/DNA complexes show, along a range of histone/DNA ratios, an important permanent dipole component. These effects reveal a particular mode of interaction of C-H4 with DNA, indicating that some charged residues of the peptide are kept distant enough from the DNA backbone. As no dipole character, in addition to that shown for DNA, has been detected for H4/DNA complexes, it is concluded that the conformation of the H4 molecule modifies to some extent the interaction of the C-terminal region. Our results show that this histone, and particularly its C-terminal region, is important as a determinant factor in the folding of DNA within artificial complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0300-9084(80)80398-1DOI Listing

Publication Analysis

Top Keywords

electron microscopy
12
h4/dna complexes
12
dna
9
folding dna
8
ratios 020-025
8
c-terminal region
8
complexes
6
interactions histone
4
histone peptides
4
peptides dna
4

Similar Publications

Metal-Modified Zr-MOFs with AIE Ligands for Boosting CO Adsorption and Photoreduction.

Adv Mater

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.

The design and synthesis of metal-organic frameworks (MOFs) with outstanding light-harvesting and photoexcitation for artificial photocatalytic CO reduction is an attractive but challenging task. In this work, a novel aggregation-induced emission (AIE)-active ligand, tetraphenylpyrazine (PTTBPC) is proposed and utilized for the first time to construct a Zr-MOF photocatalyst via coordination with stable Zr-oxo clusters. Zr-MOF is featured by a scu topology with a two-fold interpenetrated framework, wherein the PTTBPC ligands enable strong light-harvesting and photoexcitation, while the Zr-oxo clusters facilitate CO adsorption and activation, as well as offer potential sites for further metal modification.

View Article and Find Full Text PDF

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.

View Article and Find Full Text PDF

Birnaviruses infect a broad range of vertebrate hosts, including fish and birds, and cause substantial economic losses in the fishery and livestock industries. The infectious pancreatic necrosis virus (IPNV), an aquabirnavirus, specifically infects salmonids. While structures on T=1 subviral particles of the birnaviruses, including IPNV, have been studied, structural insights into the infectious T=13 particles have been limited to the infectious bursal disease virus (IBDV), an avibirnavirus.

View Article and Find Full Text PDF

Surface Modification of Polyvinylidene Fluoride Latex Nanoparticles through Chain Entanglement by Poly(meth)acrylate Monomer Swelling Seeded Emulsion Polymerization.

Langmuir

January 2025

School of Chemistry and Chemical Engineering, State Key Laboratory of Polyolefins and Catalysis, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.

Polyvinylidene fluoride (PVDF) latex nanoparticles serve as a versatile platform for surface modification due to their role as precursors in PVDF manufacturing. However, the strong chemical stability and poor compatibility of PVDF present significant challenges for effective surface modification. To address this, we developed a method that facilitates surface modification through chain entanglement.

View Article and Find Full Text PDF

Background: Carotid endarterectomy (CEA) is widely used to treat carotid artery stenosis (CAS). However, the effects of CEA on unilateral CAS-induced cognitive impairment and the underlying mechanism remain poorly understood.

Methods And Results: Thirteen patients diagnosed with unilateral severe CAS underwent pre- and post-CEA assessments, including fluoro-2-deoxy-d-glucose positron emission tomography/magnetic resonance imaging, cognitive assessments, and routine blood tests before and after CEA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!