Asymmetrical after-effects of prism adaptation during goal oriented locomotion.

Exp Brain Res

UFR STAPS, Université de Bourgogne, Dijon, Campus Universitaire, BP 27877, 21078 Dijon, France.

Published: February 2008

In healthy subjects, sensorimotor after-effects of prism adaptation are known to be symmetric (they appear after using leftward and rightward optical deviations), whereas cognitive after-effects are asymmetric (they appear after using a leftward optical deviation) and rightward oriented. Sensorimotor and cognitive after-effects have been classically studied using different specific tasks. The purpose of the current study was to investigate whether both after-effects may be involved in a same visuo-spatial task. Therefore we compared the amplitude of after-effects following adaptation to a rightward or leftward optical deviation. After-effects were assessed by manual pointing or goal oriented locomotor task. The main result showed a greater amplitude for rightward locomotor after-effects (after adaptation to a leftward deviation) than for leftward locomotor after-effects (after adaptation to a rightward deviation). This means that cognitive after-effects may add to sensorimotor after-effects following adaptation to a leftward optical deviation. This asymmetry challenges the classical distinction between sensorimotor and cognitive after-effects of prism adaptation. Implications for the functional mechanisms and the neuroanatomical substrate of prism adaptation are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-007-1152-4DOI Listing

Publication Analysis

Top Keywords

prism adaptation
16
cognitive after-effects
16
after-effects adaptation
16
after-effects prism
12
leftward optical
12
optical deviation
12
after-effects
11
adaptation
8
goal oriented
8
sensorimotor after-effects
8

Similar Publications

This study investigates the flow field around a finite rectangular prism using both experimental and computational methods, with a particular focus on the influence of the turbulence approach adopted, the mesh resolution employed, and different subgrid length scales. Ten turbulence modelling and simulation approaches, including both 'scale-modelling' Reynolds-Averaged Navier-Stokes (RANS) models and 'scale-resolving' Delayed Detached Eddy Simulation (DDES), were tested across six different mesh resolutions. A case with sharp corners allows the location of the flow separation to be fixed, which facilitates a focus on the separated flow region and, in this instance, the three-dimensional interaction of three such regions.

View Article and Find Full Text PDF

Background: Telehomecare monitoring (TM) in patients with cancer is a complex intervention. Research shows variations in the benefits and challenges TM brings to equitable access to care, the therapeutic relationship, self-management, and practice transformation. Further investigation into these variations factors will improve implementation processes and produce effective outcomes.

View Article and Find Full Text PDF

Background: This mixed methods study identified needed refinements to a telehealth-delivered cultural and linguistic adaptation of Meaning-Centered Psychotherapy for Chinese patients with advanced cancer (MCP-Ch) to enhance acceptability, comprehensibility, and implementation of the intervention in usual care settings, guided by the Ecological Validity Model (EVM) and the Practical, Robust Implementation and Sustainability Model (PRISM).

Methods: Fifteen purposively sampled mental health professionals who work with Chinese cancer patients completed surveys providing Likert-scale ratings on acceptability and comprehensibility of MCP-Ch content (guided by the EVM) and pre-implementation factors (guided by PRISM), followed by semi-structured interviews. Survey data were descriptively summarized and linked to qualitative interview data.

View Article and Find Full Text PDF

Optical edge detection is a crucial optical analog computing method in fundamental artificial intelligence, machine vision, and image recognition, owing to its advantages of parallel processing, high computing speed, and low energy consumption. Field-of-view-tunable edge detection is particularly significant for detecting a broader range of objects, enhancing both practicality and flexibility. In this work, a novel approach-adaptive optical spatial differentiation is proposed for field-of-view-tunable edge detection.

View Article and Find Full Text PDF

Enhanced Compressive Mechanical Properties of Bio-Inspired Lattice Metamaterials with Taper Struts.

Materials (Basel)

December 2024

Suzhou XDM 3D Printing Technology Co., Ltd., Suzhou 215000, China.

The stress distribution within the struts of lattice metamaterials is non-uniform under compressive loads, with stress concentrations typically occurring at the node regions. Inspired by bamboo, this study proposes a type of body-centered cubic (BCC) lattice metamaterial with tapered prism struts (BCCT). The compressive behavior, deformation modes, mechanical properties, and failure mechanisms of BCCT lattice metamaterials are systematically analyzed using finite element methods and validated through compression tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!