Background/aims: Despite widespread interest in determining the glomerular filtration rate (GFR) of patients, current methods all have significant limitations. Therefore, a compelling need exists for new tests of GFR that are both accurate and easy to perform. We have previously reported that the technique of neutron activation (NA) accurately measures iohexol in vitro. In this study, we demonstrate that NA can be used to determine GFR by measuring the clearance of iohexol, and directly compare these results to a gold-standard method based on (99m)Tc-DTPA.
Methods: We studied 57 patients with mild to moderate chronic kidney disease and normal volunteers. Subjects were simultaneously injected with iohexol and (99m)Tc-DTPA. Blood and urine samples were collected over 4 h to calculate GFR by the UV/P method.
Results: The range of GFRs was 28-212 ml/min. GFRs obtained using iohexol and (99m)Tc-DTPA correlated closely (R = 0.95). The bias between the 2 techniques was 0.96 ml/min, and precision (defined as the standard deviation of the mean of the difference between the 2 values for each patient) was 10.6 ml/min. Accuracy was such that 98% of subjects had NA GFRs within 20% of the reference (99m)Tc-DTPA measurements.
Conclusions: We conclude that NA is an excellent technique to measure GFR. NA has several advantages over current methods to directly measure GFR, including the ability to reassay samples, high throughput and the avoidance of patient and hospital radioactivity exposure. In the future, NA could be applied to GFR agents that do not contain iodine, such as Gd-DTPA, and to the simultaneous measurement of agents that reflect renal blood flow, such as iodohippurate. Therefore, NA holds great potential to improve the measurement of renal function in a safe, easily obtainable way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000109820 | DOI Listing |
IUCrJ
March 2025
Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland.
Quantum crystallography methods have been employed to investigate complex formation between nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase (COX) enzymes, with particular focus on the COX-1 and COX-2 isoforms. This study analyzed the electrostatic interaction energies of selected NSAIDs (flurbiprofen, ibuprofen, meloxicam and celecoxib) with the active sites of COX-1 and COX-2, revealing significant differences in binding profiles. Flurbiprofen exhibited the strongest interactions with both COX-1 and COX-2, indicating its potent binding affinity.
View Article and Find Full Text PDFAcc Mater Res
January 2025
Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
Methane (CH), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH has a low energy density of only 36 kJ L under ambient conditions, which is significantly lower than that of gasoline (. 34 MJ L).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China. Electronic address:
A comprehensive study was conducted to determine the effects of water and ethylene glycol (EG) on biomass pretreatment using a binary deep eutectic solvent (DES) containing choline chloride and acetic acid (1ChCl3AC) at a mole ratio of 1:3. Different quantities of water and EG were combined with 1ChCl3AC to pretreat wheat straw, miscanthus, eucalyptus, and sorghum stalk at 130 °C for 6 h. The changes in nanopore structure and surface roughness of wet biomass, as well as biomass crystallinity after 1ChCl3AC-based pretreatment were investigated using XRD and small-angle neutron scattering (SANS).
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Fayoum University, Fayoum, Egypt.
This research investigates the potential of utilizing types of construction waste as partial cement replacements within concrete formulations. Notably, granodiorite and ceramic powders were introduced at varying substitution ratios. The impact of these waste materials on the compressive strength and radiation shielding effectiveness of traditional concrete was evaluated under both ambient and elevated temperature conditions.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!