Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current therapies for inorganic mercury (Hg(2+)) intoxication include administration of a metal chelator, either 2,3-dimercaptopropane-1-sulfonic acid (DMPS) or meso-2,3-dimercaptosuccinic acid (DMSA). After exposure to either chelator, Hg(2+) is rapidly eliminated from the kidneys and excreted in the urine, presumably as an S-conjugate of DMPS or DMSA. The multidrug resistance protein 2 (Mrp2) has been implicated in this process. We hypothesize that Mrp2 mediates the secretion of DMPS- or DMSA-S-conjugates of Hg(2+) from proximal tubular cells. To test this hypothesis, the disposition of Hg(2+) was examined in control and Mrp2-deficient TR(-) rats. Rats were injected i.v. with 0.5 mumol/kg HgCl(2) containing (203)Hg(2+). Twenty-four and 28 h later, rats were injected with saline, DMPS, or DMSA. Tissues were harvested 48 h after HgCl(2) exposure. The renal and hepatic burden of Hg(2+) in the saline-injected TR(-) rats was greater than that of controls. In contrast, the amount of Hg(2+) excreted in urine and feces of TR(-) rats was less than that of controls. DMPS, but not DMSA, significantly reduced the renal and hepatic content of Hg(2+) in both groups of rats, with the greatest reduction in controls. A significant increase in urinary and fecal excretion of Hg(2+), which was greater in the controls, was also observed following DMPS treatment. Experiments utilizing inside-out membrane vesicles expressing MRP2 support these observations by demonstrating that DMPS- and DMSA-S-conjugates of Hg(2+) are transportable substrates of MRP2. Collectively, these data support a role for Mrp2 in the DMPS- and DMSA-mediated elimination of Hg(2+) from the kidney.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409288 | PMC |
http://dx.doi.org/10.1124/jpet.107.130708 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!