A novel mechanism of selectivity against AZT by the human mitochondrial DNA polymerase.

Nucleic Acids Res

Department of Chemistry & Biochemistry, Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA.

Published: December 2007

Native nucleotides show a hyperbolic concentration dependence of the pre-steady-state rate of incorporation while maintaining concentration-independent amplitude due to fast, largely irreversible pyrophosphate release. The kinetics of 3'-azido-2',3'-dideoxythymidine (AZT) incorporation exhibit an increase in amplitude and a decrease in rate as a function of nucleotide concentration, implying that pyrophosphate release must be slow so that nucleotide binding and incorporation are thermodynamically linked. Here we develop assays to measure pyrophosphate release and show that it is fast following incorporation of thymidine 5'-triphosphate (TTP). However, pyrophosphate release is slow (0.0009 s(-1)) after incorporation of AZT. Modeling of the complex kinetics resolves nucleotide binding (230 microM) and chemistry forward and reverse reactions, 0.38 and 0.22 s(-1), respectively. This unique mechanism increases selectivity against AZT incorporation by allowing reversal of the reaction and release of substrate, thereby reducing kcat/K(m) (7 x 10(-6) microM(-1) s(-1)). Other azido-nucleotides (AZG, AZC and AZA) and 8-oxo-7,8-dihydroguanosine-5'-triphosphate (8-oxo-dGTP) show this same phenomena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175305PMC
http://dx.doi.org/10.1093/nar/gkm695DOI Listing

Publication Analysis

Top Keywords

pyrophosphate release
16
selectivity azt
8
azt incorporation
8
release slow
8
nucleotide binding
8
incorporation
6
release
5
novel mechanism
4
mechanism selectivity
4
azt
4

Similar Publications

Atherosclerosis is the main pathogenic factor of various cardiovascular diseases. During the pathogenesis of atherosclerosis, macrophages play a major role, mainly by secreting pro-inflammatory cytokines and taking in lipids to form foam cells. Thiamine pyrophosphate (TPP) is an antagonist of the P2Y6 receptor, which is overexpressed on macrophages during atherosclerosis and facilitates the lipid phagocytosis of macrophages.

View Article and Find Full Text PDF

The average eukaryotic tRNA contains 13 posttranscriptional modifications; however, their functional impact is largely unknown. Our understanding of the complex tRNA aminoacylation machinery in metazoans also remains limited. Herein, using a series of high-resolution cryo-electron microscopy (cryo-EM) structures, we provide the mechanistic basis for recognition and aminoacylation of fully-modified cellular tRNA by human lysyl-tRNA synthetase (h-LysRS).

View Article and Find Full Text PDF

DNA is considered as a prospective candidate for the next-generation data storage medium, due to its high coding density, long cold-storage lifespan, and low energy consumption. Despite these advantages, challenges remain in achieving high-fidelity, fully integrated, and cost-efficient DNA storage system. In this study, a homemade digital microfluidic (DMF)-based compact DNA data storing pipeline is orchestrated to complete the entire process from the synthesis to the sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • Prebiotic synthesis of complex organic molecules has been difficult, but recent observations of liquid CO emissions in deep-sea environments suggest the existence of benthic CO pools.
  • A new hypothesis proposes that a two-phase environment of supercritical CO (ScCO) and water can enhance the dehydration and condensation of organic compounds.
  • Experiments demonstrated that this ScCO-water environment successfully produced various nucleoside monophosphates, indicating its potential to stimulate prebiotic nucleotide synthesis in extreme conditions, relevant both on Earth and in extraterrestrial ocean worlds.
View Article and Find Full Text PDF
Article Synopsis
  • * New methods for detecting NETosis have emerged, each with unique benefits and drawbacks, including a real-time microscopy technique that quantifies NET release and distinguishes NETs from other activated neutrophils.
  • * The study explores the use of the antibody inhibitor CIT-013, which effectively suppresses NET release, demonstrating the method's potential for high-throughput analysis of NETosis and its inhibitors in response to different stimuli related to diseases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!