Ubiquitination of the EGF receptor (EGFR) has been implicated in EGF-induced receptor internalization, lysosomal degradation, and down-regulation. Mutation of EGFR ubiquitination sites identified by mass spectrometry yielded receptor mutants that are weakly ubiquitinated and not down-regulated by EGF. However, these EGFR mutants were normally internalized. To examine whether this internalization was mediated by the residual ubiquitination, systematic mutagenesis of lysine residues in the kinase domain of the EGFR was performed to generate a receptor mutant that is not ubiquitinated. Mutations of a number of lysines inhibited kinase activity of the EGFR, thus leading to the inhibition of receptor internalization. However, a mutant lacking 15 lysine residues (15KR), which was negligibly ubiquitinated and normally phosphorylated, was internalized at a rate similar to that of the wild-type EGFR. As in the case of the wild-type EGFR, internalization of the 15KR mutant depended on the presence of clathrin, Grb2 adaptor, and Cbl ubiquitin ligase. These data imply that EGFR ubiquitination is not necessary for its internalization by clathrin-coated pits. Interestingly, the reconstitution of two major ubiquitination sites in the 16KR receptor mutant, which had impaired kinase activity and slow internalization kinetics, resulted in a partial rescue of ubiquitination and a complete rescue of receptor internalization. This result suggests that ubiquitination of the kinase-impaired receptor can mediate its internalization by the clathrin pathway. Altogether these data emphasize the robustness of the EGFR internalization process, which can be controlled by multiple kinase- and ubiquitination-dependent and -independent mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2040475 | PMC |
http://dx.doi.org/10.1073/pnas.0707416104 | DOI Listing |
J Control Release
January 2025
Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea. Electronic address:
Receptor-mediated endocytosis plays a crucial role in the success of numerous therapies and remains central to advancing drug development. This process begins with ligand binding to specific receptors, triggering the internalization and intracellular trafficking of receptor-ligand complexes. These complexes are subsequently directed into distinct routes, either toward lysosomal degradation or recycling to the cell surface, with implications for therapeutic outcomes.
View Article and Find Full Text PDFJ Crohns Colitis
January 2025
Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
Background And Aims: Protein tyrosine phosphatase non-receptor type 23 (PTPN23) regulates the internalization of growth factor receptors such as the epithelial growth factor receptor (EGFR). Given the crucial function of such receptors in intestinal epithelial cells (IECs), we assessed the involvement of PTPN23 in intestinal homeostasis and epithelial proliferation.
Methods: We generated mouse models with constitutive (PTPN23fl/flVilCre+/-) or inducible (PTPN23fl/flVilCreERT+/-) deletion of PTPN23 in IEC.
Front Immunol
January 2025
Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
Introduction: The AB-type toxin AIP56 is a key virulence factor of Photobacterium damselae subsp. piscicida (Phdp), inducing apoptosis in fish immune cells. The discovery of AIP56-like and AIP56-related toxins in diverse organisms, including human-associated Vibrio strains, highlights the evolutionary conservation of this toxin family, suggesting that AIP56 and its homologs may share conserved receptors across species.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
Background: COVID-19 has been associated with both respiratory (diaphragm) and non-respiratory (limb) muscle atrophy. It is unclear if SARS-CoV-2 infection of skeletal muscle plays a role in these changes. This study sought to: 1) determine if cells comprising skeletal muscle tissue, particularly myofibres, express the molecular components required for SARS-CoV-2 infection; 2) assess the capacity for direct SARS-CoV-2 infection and its impact on atrophy pathway genes in myogenic cells; and 3) in an animal model of COVID-19, examine the relationship between viral infection of skeletal muscle and myofibre atrophy within the diaphragm and limb muscles.
View Article and Find Full Text PDFNat Commun
January 2025
College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
Chronic kidney disease (CKD) ultimately causes renal fibrosis and end-stage renal disease, thus seriously threatens human health. However, current medications for CKD and fibrosis are inefficient, which is often due to poor targeting capability to renal tubule. In this study, we discover that biomimetic high-density lipoprotein (bHDL) lipid nanoparticles possess excellent targeting ability to injured tubular epithelial cells by kidney injury molecule-1(KIM-1) mediated internalization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!