Quasi-species evolution in subdivided populations favours maximally deleterious mutations.

Proc Biol Sci

Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA.

Published: December 2007

Most models of quasi-species evolution predict that populations will evolve to occupy areas of sequence space with the greatest concentration of neutral sequences, thus minimizing the deleterious mutation rate and creating mutationally 'robust' genomes. In contrast, empirical studies of the principal model of quasi-species evolution, RNA viruses, suggest that the effects of deleterious mutations are more severe than in similar DNA-based microbes. We demonstrate that populations divided into discrete patches connected by dispersal may favour genotypes where the deleterious effect of non-neutral mutations is maximized. This effect is especially strong in the absence of back mutation and when the amount of time spent in hosts prior to dispersal is intermediate. Our results indicate that RNA viruses that produce acute infections initiated by a small number of virions are expected to evolve fragile genetic architectures when compared with other RNA viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2293948PMC
http://dx.doi.org/10.1098/rspb.2007.1228DOI Listing

Publication Analysis

Top Keywords

quasi-species evolution
12
rna viruses
12
deleterious mutations
8
evolution subdivided
4
subdivided populations
4
populations favours
4
favours maximally
4
deleterious
4
maximally deleterious
4
mutations models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!