Glucose regulatory protein (GRP58) is known to mediate mitomycin C (MMC)-induced DNA cross-linking. However, the mechanism remains elusive. We hypothesized that thioredoxin-like domains, one at NH2 terminus and another at COOH terminus, are required for GRP58-mediated MMC reductive activation leading to DNA cross-linking. Site-directed mutagenesis mutated cysteines in thioredoxin domains to serines. Wild-type (WT) and mutant GRP58 were cloned in pcDNA to produce GRP58 V5-tagged WT and mutant proteins on transfection in mammalian cells. Human colon carcinoma (HCT116) cells transiently expressing and Chinese hamster ovary cells stably expressing WT and mutant GRP58 were analyzed for MMC-induced DNA cross-linking. WT GRP58 was highly efficient in MMC-induced DNA cross-linking. However, both NH2- and COOH-terminal thioredoxin mutants showed significant reduction in MMC-induced DNA cross-linking. The coexpression of GRP58 with thioredoxin reductase 1 and/or treatment of cells with NADPH increased MMC-induced DNA cross-linking from the WT GRP58. In similar experiments, siRNA inhibition of thioredoxin reductase 1 led to decreased MMC-induced DNA cross-linking. Further experiments revealed that mutations in thioredoxin domains led to significant decrease in metabolic reductive activation of MMC. These results led to conclusion that GRP58, through its two thioredoxin-like domains, functions as a reductase leading to bioreductive drug MMC activation and DNA cross-linking.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-07-0160DOI Listing

Publication Analysis

Top Keywords

dna cross-linking
36
mmc-induced dna
24
thioredoxin-like domains
12
reductive activation
12
dna
9
cross-linking
9
glucose regulatory
8
regulatory protein
8
leading dna
8
grp58
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!