Cellular dynamics in the draining lymph nodes during sensitization and elicitation phases of contact hypersensitivity.

Contact Dermatitis

Section of Experimental Immunology, Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.

Published: November 2007

AI Article Synopsis

Article Abstract

Background: The different role of various immunological effector cells in contact hypersensitivity (CHS) is receiving increased attention. During the past decade, the involvement of different cell types in CHS has been investigated by the use of antibody-induced depletion of specific subtypes of immunological cells and by studying knockout mice lacking one or more of these immunological cell populations.

Objectives: To develop a method for studying the collective cellular dynamics of immune cells in the draining lymph nodes during CHS in intact animals.

Patients/methods: Mice were sensitized and/or challenged with 2,4-dinitrofluorobenzene or oxazolone. Using multi-parameter flow cytometry we determined the proliferation, activation state, and absolute number of helper T cells, cytotoxic T cells, B cells, and natural killer cells in the draining lymph nodes.

Results: The presented method can be applied to evaluate the effect of different contact allergens on various cell populations of the immune system.

Conclusions: Our study support recent findings that several cell types seem to be involved in CHS.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0536.2007.01230.xDOI Listing

Publication Analysis

Top Keywords

draining lymph
12
cellular dynamics
8
lymph nodes
8
contact hypersensitivity
8
cell types
8
cells draining
8
cells
7
dynamics draining
4
nodes sensitization
4
sensitization elicitation
4

Similar Publications

At the end of 2019, SARS-CoV-2 emerged and rapidly spread, having a profound negative impact on human health and socioeconomic conditions. In response to this unprecedented global health crisis, significant advancements were made in the mRNA vaccine technology. In this study, we have compared the difference between two SARS-CoV-2 receptor-binding domain (RBD) mRNA-Lipid nanoparticle (LNP) vaccines prepared from two different ionizable cationic lipids: ALC-0315 and MC3.

View Article and Find Full Text PDF

Purpose: To assess the success rate of confirmation of ultrasound-guided intranodal needle positioning by saline injection for dynamic contrast-enhanced magnetic resonance lymphangiography (DCMRL) in pediatric patients.

Material And Methods: Data from children undergoing nodal DCMRL after ultrasound-guided needle positioning into inguinal lymph nodes and validation of the needle position by injection of plain saline solution between 05/2020 and 12/2022 were reviewed. On injection of saline solution, adequate needle position was confirmed by lymph node distension without leakage.

View Article and Find Full Text PDF

Cyclic peptides are often used as scaffolds for the multivalent presentation of drug molecules due to their structural stability and constrained conformation. We identified a cyclic deca-peptide incorporating lipoamino acids for delivering T helper and B cell epitopes against group A Streptococcus (GAS), eliciting robust humoral immune responses. In this study, we assessed the function-immunogenicity relationship of the multi-component vaccine candidate (referred to as VC-13) to elucidate a mechanism of action.

View Article and Find Full Text PDF

The persistent emergence of COVID-19 variants and recurrent waves of infection worldwide underscores the urgent need for vaccines that effectively reduce viral transmission and prevent infections. Current intramuscular (IM) COVID-19 vaccines inadequately protect the upper respiratory mucosa. In response, we have developed a nonadjuvanted, interferon-armed SARS-CoV-2 fusion protein vaccine with IM priming and intranasal (IN) boost sequential immunization.

View Article and Find Full Text PDF

Objective: Photosensitivity occurs in ~75% of lupus patients. Although ultraviolet light radiation (UVR) stimulates Type I interferon (IFN-I) in the skin, how UVR induced skin inflammation leads to downstream effects is poorly understood. Tissue inflammation causes DC to migrate from organs to draining lymph nodes (dLN) including a recently identified inflammatory DC subset (inf cDC2) that are potent antigen presenting cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!