Measurements of deep temperature in muscle are conducted by means of microwave radiothermometer which allow one to separate contributions of different intramuscle processes: that of the contractile system, bloodflow, heat production due to metabolic processes during muscle work. The efficiency coefficient of the contractile system is not less than 33%, bloodflow and metabolism induce equal temperature increase. A mathematical model is proposed to calculate from noninvasive experimental data the blood flow dynamics during and after different muscle loads.

Download full-text PDF

Source

Publication Analysis

Top Keywords

contractile system
8
[kinetics heat
4
heat processes
4
processes human
4
human muscle]
4
muscle] measurements
4
measurements deep
4
deep temperature
4
temperature muscle
4
muscle conducted
4

Similar Publications

Engineering skeletal muscle tissue with precisely defined alignment is of significant importance for applications ranging from drug screening to biohybrid robotics. Aligning 2D contractile muscle monolayers, which are compatible with high-content imaging and can be deployed in planar soft robots, typically requires micropatterned cues. However, current protocols for integrating microscale topographical features in extracellular matrix hydrogels require expensive microfabrication equipment and multi-step procedures involving error-prone manual handling steps.

View Article and Find Full Text PDF

Role of Gut Microbial Metabolites in Ischemic and Non-Ischemic Heart Failure.

Int J Mol Sci

March 2025

Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, BH-550 CHS, Los Angeles, CA 90095-7115, USA.

The effect of the gut microbiota extends beyond their habitant place from the gastrointestinal tract to distant organs, including the cardiovascular system. Research interest in the relationship between the heart and the gut microbiota has recently been emerging. The gut microbiota secretes metabolites, including Trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), bile acids (BAs), indole propionic acid (IPA), hydrogen sulfide (HS), and phenylacetylglutamine (PAGln).

View Article and Find Full Text PDF

Bitter taste receptors (TAS2Rs) are expressed in extraoral tissues, exerting several functions and generating a whole-body chemosensory and protective system. TAS2Rs expression has been observed in the gastrointestinal tract, although their role is poorly understood. This study aims to investigate the role of TAS2R38 and 46 in human intestinal smooth muscle cells (HISMCs) after activation with the specific bitter ligands phenylthiocarbamide and absinthin, respectively.

View Article and Find Full Text PDF

Predictive control of musculotendon loads across fast and slow-twitch muscles in a simulated system with parallel actuation.

Wearable Technol

February 2025

Neuromuscular Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands.

Research in lower limb wearable robotic control has largely focused on reducing the metabolic cost of walking or compensating for a portion of the biological joint torque, for example, by applying support proportional to estimated biological joint torques. However, due to different musculotendon unit (MTU) contractile speed properties, less attention has been given to the development of wearable robotic controllers that can steer MTU dynamics directly. Therefore, closed-loop control of MTU dynamics needs to be robust across fiber phenotypes, that is ranging from slow type I to fast type IIx in humans.

View Article and Find Full Text PDF

Monolayers of confluent elongated cells are frequently considered active nematics, featuring topological defects. In extensile systems, where cells extend further along their long axis, they can accumulate at defects and escape from defects. Nevertheless, collective dynamics surrounding integer defects remain insufficiently understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!