The effects of a sequencing variation for dissolved oxygen (DO) concentrations on the membrane permeability in a submerged membrane bioreactor (MBR) were studied. An MBR was continuously operated under alternating DO conditions, e.g., 36 h of an aerobic phase, followed by 36 h of an anoxic phase. The rate of increase in transmembrane pressure (TMP) in the anoxic phase was always steeper than that in the aerobic phase, indicating that the fouling rate was higher in the anoxic than in the aerobic condition. Regardless of the phases, the rate of TMP increase became steeper as the cycles were repeated. However, this trend became less important as the cycle numbers increased. Even in identical microbial communities, the number of colloidal particles and soluble extracellular polymeric substances (EPS) in the bulk solution were increased during the anoxic condition, which caused a reduction in the porosity of the bio-cake. During analysis of the bio-cake profile along the cake depth, the temporal variation of the bio-cake structure was attributed to the temporal change in the number of colloidal particles as well as the change in compression forces acting on the bio-cake. The influence of the latter was found to be more important than that of the former, which was verified by comparing the various structures of bio-cake formed in differing DO environments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es070467aDOI Listing

Publication Analysis

Top Keywords

membrane bioreactor
8
aerobic phase
8
anoxic phase
8
number colloidal
8
colloidal particles
8
bio-cake
6
effects intermittent
4
intermittent aeration
4
aeration characteristics
4
characteristics bio-cake
4

Similar Publications

Microalgae-based membrane bioreactor for wastewater treatment, biogas production, and sustainable energy: a review.

Environ Res

January 2025

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia.

Managing wastewater and using renewable energy sources are challenges in achieving Sustainable Development Goals. This study provides an overview of the factors influencing the performance of algae-based membrane bioreactors (AMBRs) for contaminant removal from wastewater and biogas. This review highlights that the performance of AMBRs in removing total phosphorus (TP) and nitrogen (N) from wastewater can reach up to 93% and 97%, depending on parameters such as pH, hydraulic retention time (HRT), and algae concentration.

View Article and Find Full Text PDF

Mitigating the release of extracellular antimicrobial resistance genes (exARGs) from wastewater treatment plants (WWTPs) is crucial for preventing the spread of antimicrobial resistance from human domains into the environment. This study aimed to evaluate the applicability of intI1 as a performance indicator for securing the removal of exARGs at WWTPs. We investigated the reduction of exARGs and intI1 in a full-scale WWTP, where identical wastewater was treated using conventional activated sludge (CAS) and membrane bioreactor (MBR) systems.

View Article and Find Full Text PDF

A comparative evaluation of dark fermentative bioreactor configurations for enhanced hydrogen production.

Environ Sci Pollut Res Int

January 2025

Viona Consulting Inc, Agro-Environmental Innovation and Technology, Research and Development Company, Thornhill, ON, L3T 0C6, Canada.

Energy from renewable resources has been growing in popularity, which ultimately helps reduce emissions of greenhouse gases (GHGs) and contaminants. Since hydrogen (H) has a higher combustion production of energy than hydrocarbon fuels, it has been identified as a clean, sustainable, and environmentally friendly energy source. There are several benefits to producing biohydrogen (bioH) from renewable sources, including lower cost and increased sustainability.

View Article and Find Full Text PDF

A low-cost and renewable magnetite-pine bark (MPB) sorbent was evaluated in continuous-flow systems for the removal of various pharmaceuticals from municipal wastewater effluent following membrane bioreactor (MBR) treatment. A 33-day small-scale column test (bed volume: 791 cm) was conducted using duplicate columns of biochar (BC, Novocarbo) and activated carbon (AC, ColorSorb) as reference for two columns of BC and MPB in order to compare the efficiency of AC and MPB. After the small-scale column test, the pharmaceutical concentrations were generally below the detection limit.

View Article and Find Full Text PDF

Submerged membrane bioreactor (SMBR) is a promising technology in municipal wastewater treatment, but the membrane fouling has restricted its development. In this study, an integrated submerged ceramic membrane bioreactor (C-SMBR) was constructed to treat domestic wastewater, and the characteristics of membrane fouling and the microbial community structure were investigated. The results showed that the average removal efficiencies of COD, TN, NH-N reached 94.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!