A quick and cost-effective technique of sample preparation followed by a reversed-phase high performance liquid chromatography under "organic solvent-free" (=100% aqueous) conditions for the simultaneous quantifying of sulfadimethoxine (SDM) and its metabolites, 6-hydroxy SDM (6-OH) and N(4)-acetyl SDM (N(4)-Ac), in chicken muscle is presented. Analysis by HPLC with photo-diode array detector was performed using a short C1 column with an isocratic 0.04 mol/l citric acid mobile phase. The method was validated by the analyses of spiked chicken muscle samples, resulting recoveries (> or =84%; relative standard deviations < or =6%), analytical total time (<1/2 h/sample, where a batch of 12 samples in 4 h), and limits of quantitation (< or =0.1 microg/g). The decision limits and detection capability were 0.019-0.106 and 0.054-0.112 microg/g, respectively. No organic solvents were used at all.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2007.08.040 | DOI Listing |
Foods
December 2024
Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy.
This study assessed the impact of growth-related myopathies-white striping (WS), wooden breast (WB), and spaghetti meat (SM)-on the technological properties, lipid and protein oxidation, chemical composition, and profiles of fatty acids (FAs), amino acids, minerals, and sensory attributes of muscles in broiler chickens. Breasts with myopathies had similar pH and lightness but exhibited lower redness and yellowness in the case of WB defect compared to normal meat ( < 0.05).
View Article and Find Full Text PDFFoods
December 2024
State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China.
Skeletal muscle fiber characteristics are pivotal in assessing meat quality. However, there is currently a lack of research precisely quantifying the total number of myofibers (TNM) of skeletal muscles. This study used Arbor Acres (AA) broilers and Wenchang (WC) chickens to determine the TNM of several skeletal muscles and the meat quality of the pectoralis major muscle (PM).
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
In this study, broilers were selected as the research object to investigate the effects and mechanisms of dietary gallic acid (GA) supplementation on growth performance, meat quality, antioxidant capacity, and muscle fiber-related gene expression. A total of 750 one-day-old healthy 817 male crossbred broiler chickens were divided into five treatment groups, with six replicates per group. Birds in the control (CON) group and LPS-challenged treatment (LPS) group were fed a basal diet, and birds in the other three treatment groups received the basal diet with 150, 300, or 450 mg/kg added GA (GA150, GA300, GA450).
View Article and Find Full Text PDFFront Physiol
December 2024
Raw Materials and Optimalization, Nofima AS, Ås, Norway.
Introduction: Skeletal muscle satellite cells (MuSCs or stem cells) play a crucial role in muscle development, maintenance, and regeneration, supporting both hypertrophy and regenerative myogenesis. Syndecans (SDCs) act as communication bridges within the muscle microenvironment, regulating interactions with extracellular matrix components and contributing significantly to tissue repair and inflammation. Specifically, syndecan-4 (SDC4) is involved in muscle regeneration at multiple stages.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China.
Enhanced glycolysis and elevated lactic acid (LA) production are observed during sudden death syndrome (SDS) in broilers. However, the mechanism underlying LA-induced cardiomyocyte damage and heart failure in fast-growing broilers remains unclear. In this study, chicken embryo cardiomyocytes (CECs) were cultured and treated with LA to investigate LA-induced CEC injury and its mechanism, aiming to develop strategies to prevent LA-induced SDS in broilers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!