Fifteen years of evidence have established that the cytokine erythropoietin offers promise as a treatment for brain injury. In particular, neonatal brain injury may be reduced or prevented by early treatment with recombinant erythropoietin. Extreme prematurity and perinatal asphyxia are common conditions associated with poor neurodevelopmental outcomes including cerebral palsy, mental retardation, hearing or visual impairment, and attention deficit hyperactivity disorder. When high doses of erythropoietin are administered systemically, a small proportion crosses the blood-brain barrier and can protect against hypoxic-ischemic brain injury. In addition to other protective effects, erythropoietin can specifically protect dopaminergic neurons. Since reduced dopamine neurotransmission contributes to attention deficit hyperactivity disorder, this condition may be amenable to erythropoietin treatment. This review focuses on the potential application of erythropoietin as a neuroprotectant with regard to neurologic complications of extreme prematurity, including attention deficit hyperactivity disorder. Recent concerns that early erythropoietin might exacerbate the pathologic neovascularization associated with retinopathy of prematurity are addressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2312376 | PMC |
http://dx.doi.org/10.1016/j.ijdevneu.2007.08.012 | DOI Listing |
Neurochem Res
January 2025
Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China.
Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (HS) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.
Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Cariology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, 600 077, Chennai, India.
Neurosurg Rev
January 2025
Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600 077, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!