Both proopiomelanocortin (POMC) and ghrelin peptides are implicated in the feeding regulation. The synaptic relationships between POMC- and ghrelin-containing neurons in the hypothalamic arcuate nucleus were studied using double-immunostaining methods at the light and electron microscope levels. Many POMC-like immunoreactive axon terminals were found to be apposed to ghrelin-like immunoreactive neurons and also to make synapses with ghrelin-like immunoreactive neuronal perikarya and dendritic processes. Most of the synapses were symmetrical in shape. A small number of synapses made by ghrelin-like immunoreactive axon terminals on POMC-like immunoreactive neurons were also identified. Both the POMC- and ghrelin-like immunoreactive neurons were found to contain large dense granular vesicles. These data suggest that the POMC-producing neurons are modulated via synaptic communication with ghrelin-containing neurons. Moreover, ghrelin-containing neurons may also have a feedback effect on POMC-containing neurons through direct synaptic contacts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.regpep.2007.09.028DOI Listing

Publication Analysis

Top Keywords

ghrelin-containing neurons
16
ghrelin-like immunoreactive
16
immunoreactive neurons
12
neurons
9
synaptic relationships
8
arcuate nucleus
8
pomc-like immunoreactive
8
immunoreactive axon
8
axon terminals
8
synapses ghrelin-like
8

Similar Publications

Ghrelin, a gastrointestinal hormone, is a modulator of the sense of smell. The main source of ghrelin in the central nervous system has been mainly observed in specific populations of hypothalamic neurons. An increasing number of studies have reported ghrelin synthesis and its effect on neurons outside the hypothalamus.

View Article and Find Full Text PDF

Diet-induced adaptation of vagal afferent function.

J Physiol

January 2012

Nerve-Gut Research Laboratory, Hanson Institute, Royal Adelaide Hospital, Adelaide, South Australia.

Afferent signals from the stomach play an important role in inhibition of food intake during a meal. The gastric hormone ghrelin can influence gastric satiety signalling by altering the sensitivity of gastric vagal afferents. Changes in diet, including food restriction and high fat diet (HFD) alter satiety signalling.

View Article and Find Full Text PDF

Ghrelin, an n-octanoylated 28-amino acid brain-gut peptide, was first isolated from extracts of porcine stomach. Ghrelin is an endogenous ligand for the growth hormone secretagogue type 1a receptor (GHS-R1a), the functionally active form of GHS-R, and stimulates feeding and growth hormone secretion. Ghrelin is mainly produced in the A/X-like cells of the oxyntic glands of the stomach and is the main orexigenic circulating hormone that acts on the hypothalamus to affect feeding behavior and energy metabolism.

View Article and Find Full Text PDF

The gut-brain hormone ghrelin is known to stimulate growth hormone release from the pituitary gland, and to regulate appetite and energy metabolism. Ghrelin-containing neurons have been shown to form neuronal network with several types of appetite-regulating neurons in the hypothalamus. Although ghrelin-containing cell bodies have been reported to localize in the hypothalamic arcuate nucleus, the published results present large discrepancies regarding the localization of ghrelin-positive cell bodies in the brain.

View Article and Find Full Text PDF

Both proopiomelanocortin (POMC) and ghrelin peptides are implicated in the feeding regulation. The synaptic relationships between POMC- and ghrelin-containing neurons in the hypothalamic arcuate nucleus were studied using double-immunostaining methods at the light and electron microscope levels. Many POMC-like immunoreactive axon terminals were found to be apposed to ghrelin-like immunoreactive neurons and also to make synapses with ghrelin-like immunoreactive neuronal perikarya and dendritic processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!