KirBac3.1 belongs to a family of transmembrane potassium (K(+)) channels that permit the selective flow of K-ions across biological membranes and thereby regulate cell excitability. They are crucial for a wide range of biological processes and mutations in their genes cause multiple human diseases. Opening and closing (gating) of Kir channels may occur spontaneously but is modulated by numerous intracellular ligands that bind to the channel itself. These include lipids (such as PIP(2)), G-proteins, nucleotides (such as ATP) and ions (e.g. H(+), Mg(2+), Ca(2+)). We have used high-resolution atomic force microscopy (AFM) to examine KirBac3.1 in two different configurations. AFM imaging of the cytoplasmic surface of KirBac3.1 embedded in a lipid bilayer has allowed visualization of the tetrameric assembly of the ligand-binding domain. In the absence of Mg(2+), the four subunits appeared as four protrusions surrounding a central depression corresponding to the cytoplasmic pore. They did not display 4-fold symmetry, but formed a dimer-of-dimers with 2-fold symmetry. Upon addition of Mg(2+), a marked rearrangement of the intracellular ligand-binding domains was observed: the four protrusions condensed into a single protrusion per tetramer, and there was an accompanying increase in protrusion height. The central cavity within the four intracellular domains also disappeared on addition of Mg(2+), indicating constriction of the cytoplasmic pore. These structural changes are likely transduced to the transmembrane helices, which gate the K(+) channel. This is the first time AFM has been used as an interactive tool to study K(+) channels. It has enabled us to directly measure the conformational changes in the protein surface produced by ligand binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2007.09.043 | DOI Listing |
Sci Rep
December 2024
Department of Physics, Shahid Beheshti University, Tehran, 1983969411, Iran.
Machine learning interatomic potentials, as a modern generation of classical force fields, take atomic environments as input and predict the corresponding atomic energies and forces. We challenge the commonly accepted assumption that the contribution of an atom can be learned from the short-range local environment of that atom. We employ density functional theory calculations to quantify the decay of the induced electron density and electrostatic potential in response to local perturbations throughout insulating, semiconducting and metallic samples of different dimensionalities.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland.
Physical and photophysical properties of starch-based biopolymer films containing 5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (NTA) powder as a nanofiller were examined using atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), stationary UV-Vis and fluorescence spectroscopy as well as resonance light scattering (RLS) and time-resolved measurements, and where possible, analyzed with reference to pristine NTA solutions. AFM studies revealed that the addition of NTA into the starch biopolymer did not significantly affect surface roughness, with all examined films displaying similar Sq values ranging from 70.7 nm to 79.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Agriculture and Bioengineering, Heze University, Heze 274500, China. Electronic address:
Herin, the successful synthesis of a bis Schiff base (L) has been achieved using 2-hydroxy-1-naphthaldehyde and 1,3-diaminoguanidine as raw materials, which was further characterized by infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance hydrogen spectrum. Moreover, spectroscopic experiments demonstrated that the probe L showed good selectivity and visual detectability for Al. Its detection limit (DL) is 2.
View Article and Find Full Text PDFVestn Oftalmol
December 2024
Institute of Regenerative Medicine of the Sechenov University, Moscow, Russia.
Unlabelled: The scientific and practical interest in studying the biomechanical characteristics of the lens capsule, on the one hand, is associated with its anatomical significance in modern microinvasive phaco surgery, and on the other hand, with investigation of the mechanisms of lens curvature changes during accommodation. Selective study of the biomechanical properties of the lens capsule aims to identify characteristics of various regions and surfaces of the capsule.
Purpose: This study is a comparative analysis of age-related changes in the biomechanical properties of the anterior (AC) and posterior (PC) lens capsules in humans.
Sci Rep
December 2024
Department of Mathematics, Payame Noor University, Tehran, Iran.
In the realm of petroleum extraction, well productivity declines as reservoirs deplete, eventually reaching a point where continued extraction becomes economically unfeasible. To counteract this, artificial lift techniques are employed, with gas injection being a prevalent method. Ideally, unrestricted gas injection could maximize oil output.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!