A new series of potent macrocyclic urea-based Chk1 inhibitors are described. A detailed SAR study on the 4-position of the phenyl ring of the 14-member macrocyclic ureas 1a and d led to the identification of the potent Chk1 inhibitors 2, 5-7, 10, 13, 14, 19-21, 25, 27, and 31-34. These compounds significantly sensitize tumor cells to the DNA-damaging antitumor agent doxorubicin in a cell-based assay and efficiently abrogate the doxorubicin-induced G2/M and camptothecin-induced S checkpoints, indicating that the potent biological activities of these compounds are mechanism-based through Chk1 inhibition. Kinome profiling analysis of a representative macrocyclic urea 25 against a panel of 120 kinases indicates that these novel macrocyclic ureas are highly selective Chk1 inhibitors. Preliminary PK studies of 1a and b suggest that the 14-member macrocyclic inhibitors may possess better PK properties than their 15-member counterparts. An improved synthesis of 2 and 20 by using 2-(trimethylsilyl)ethoxycarbonyl (Teoc) to protect the amino group not only readily provided the desired compounds in pure form but also facilitated the scale up of potent compounds for various biological studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2007.09.063DOI Listing

Publication Analysis

Top Keywords

chk1 inhibitors
16
macrocyclic ureas
12
selective chk1
8
improved synthesis
8
kinome profiling
8
14-member macrocyclic
8
macrocyclic
6
potent
5
chk1
5
inhibitors
5

Similar Publications

Purpose: This study focused on combining irinotecan with Poly (ADP-ribose) polymerase (PARP) inhibitors to explore the potential for novel combination therapeutics in small cell lung cancer (SCLC).

Materials And Methods: We selected 10 different SCLC cell lines with diverse mutational backgrounds in DNA damage response (DDR) pathway genes to evaluate the efficacy of the combination of three PARP inhibitors and irinotecan. After the cells were exposed to the drugs for seven days, cell viability was measured, and a combination index was calculated.

View Article and Find Full Text PDF

Background: Chromosomal instability (CIN), a hallmark of cancer, is commonly linked to poor prognosis in high-grade prostate cancer (PCa). Paradoxically, excessively high levels of CIN may impair cancer cell viability. Consequently, understanding how tumours adapt to CIN is critical for identifying novel therapeutic targets.

View Article and Find Full Text PDF

Hepatitis B virus hijacks MRE11-RAD50-NBS1 complex to form its minichromosome.

PLoS Pathog

January 2025

State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China.

Chronic hepatitis B virus (HBV) infection can significantly increase the incidence of cirrhosis and liver cancer, and there is no curative treatment. The persistence of HBV covalently closed circular DNA (cccDNA) is the major obstacle of antiviral treatments. cccDNA is formed through repairing viral partially double-stranded relaxed circular DNA (rcDNA) by varies host factors.

View Article and Find Full Text PDF

Immune checkpoint inhibitors against PD-1/PD-L1 are highly effective in immunologically hot tumours such as triple-negative breast cancer, wherein constitutive DNA damage promotes inflammation, while inducing PD-L1 expression to avoid attack by cytotoxic T cells. However, whether and how PD-L1 regulates the DNA damage response and inflammation remains unclear. Here, we show that nuclear PD-L1 activates the ATR-Chk1 pathway and induces proinflammatory chemocytokines upon genotoxic stress.

View Article and Find Full Text PDF

ATM/ATR-Mediated DNA Damage Response Facilitates SARS-CoV-2 Spike Protein-Induced Syncytium Formation.

J Med Virol

January 2025

Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.

Multinucleated cells are present in lung tissues of patients infected by SARS-CoV-2. Although the spike protein can cause the fusion of infected cells and ACE2-expressing cells to form syncytia and induce damage, how host cell responses to this damage and the role of DNA damage response (DDR) signals in cell fusion are still unclear. Therefore, we investigated the effect of SARS-CoV-2 spike protein on the fusion of homologous and heterologous cells expressing ACE2 in vitro models, focusing on the protein levels of ATR and ATM, the major kinases responding to DNA damage, and their substrates CHK1 and CHK2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!