A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Changes in poly(ADP-ribose) level modulate the kinetics of DNA strand break rejoining. | LitMetric

ADP-ribose polymers are rapidly synthesized in cell nuclei by the poly(ADP-ribose) polymerases PARP-1 and PARP-2 in response to DNA strand interruptions, using NAD(+) as precursor. The level of induced poly(ADP-ribose) formation is proportional to the level of DNA damage and can be decreased by NAD(+) or PARP deficiency, followed by poor DNA repair and genomic instability. Here we studied the correlation between poly(ADP-ribose) level and DNA strand break repair in lymphoblastoid Raji cells. Poly(ADP-ribose) synthesis was induced by 100 microM H(2)O(2) and intensified by the 1,4-dihydropyridine derivative AV-153. The level of poly(ADP-ribose) in individual cells was analyzed by quantitative in situ immunofluorescence and confirmed in whole-cell extracts by Western blotting, and DNA damage was assessed by alkaline comet assays. Cells showed a approximately 100-fold increase in poly(ADP-ribose) formation during the first 5 min of recovery from H(2)O(2) treatment, followed by a gradual decrease up to 15 min. This synthesis was completely inhibited by the PARP inhibitor NU1025 (100 microM) while the cells treated with AV-153, at non-genotoxic concentrations of 1 nM-10 microM, showed a concentration-dependent increase of poly(ADP-ribose) level up to 130% after the first minute of recovery. The transient increase in poly(ADP-ribose) level was strongly correlated with the speed and efficiency of DNA strand break rejoining (correlation coefficient r > or = 0.92, p<0.05). These results are consistent with the idea that poly(ADP-ribose) formation immediately after genome damage reflects rapid assembly and efficient functioning of repair machinery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrfmmm.2007.08.005DOI Listing

Publication Analysis

Top Keywords

polyadp-ribose level
16
dna strand
16
strand break
12
increase polyadp-ribose
12
break rejoining
8
polyadp-ribose
8
polyadp-ribose formation
8
level dna
8
dna damage
8
100 microm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!