The structures of AgSi(n) (n=1-13) clusters are investigated using first-principles calculations. Our studies suggest that AgSi(n) clusters with n=7 and 10 are relatively stable isomers and that these clusters prefer to be exohedral rather than endohedral. Moreover, doping leaves the inner core structure of the clusters largely intact. Additionally, the plot of fragmentation energies as a function of silicon atoms shows that the AgSi(n) are favored to dissociate into one Ag atom and Si(n) clusters. Alternative pathways exist for n>7 (except n=11) in which the Ag-Si cluster dissociates into a stable Si(7) and a smaller fragment AgSi(n-7). The AgSi(11) cluster dissociates into a stable Si(10) and a small fragment AgSi. Lastly, our analysis indicates that doping of Ag atom significantly decreases the gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital for n>7.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2775447 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!