Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coupled-cluster theory with single and double excitations is applied to the calculation of optical properties of large polyaromatic hydrocarbons. Dipole polarizabilities are reported for benzene, pyrene, and the oligoacenes sequence n=2-6. Dynamic polarizabilities were calculated on polyacences as large as pentacene for a single frequency and for benzene and pyrene at many frequencies. The basis set effect was studied for benzene using a variety of basis sets in the Pople [Theor. Chim. Acta 28, 213 (1973)] and Dunning [J. Chem. Phys. 90, 1007 (1989)] families up to aug-cc-pVQZ and the Sadlej pVTZ basis [Collect. Czech. Chem. Commun. 53, 1995 (1998)], which was used exclusively for the largest molecules. Geometries were optimized using HF, B3LYP, PBE0, and MP2 and compared to experiment to measure method dependence and the possible role of bond-length alternation. Finally, the polarizability results were compared to four common density functionals (B3LYP, BLYP, PBE0, PBE).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2772853 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!