Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the context of investigating organic molecules for molecular electronics, doping molecular wires with transition metal atoms provides additional means of controlling their transport behavior. The incorporation of transition metal atoms may generate spin dependence because the conduction channels of only one spin component align with the chemical potential of the leads, resulting in a spin polarized electric current. The possibility to create such a spin polarized current is investigated here with the organometallic moiety cobaltocene. According to our calculations, cobaltocene contacted with gold electrodes acts as a robust spin filter: Applying a voltage less than 0.2 V causes the current of one spin component crossing the molecular bridge to be two orders of magnitude larger than the other. We address the key issue of sensitivity to molecule-lead geometry by showing that a weak barrier generated by CH(2) groups between the cobaltocene and the leads is crucial in reducing the sensitivity to the contact geometry while only reducing the current modestly. These results suggest cobaltocene as a robust basic building block for molecular spintronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2796151 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!