Background: Despite the adjuvant use of mitomycin C during trabeculectomy, failures still occur. We investigated whether cultured human Tenon fibroblasts exposed to low-dose mitomycin C developed a multidrug resistance phenotype in vitro, and whether mitomycin C treatment during previous filtration surgery induces P-glycoprotein expression in vivo.

Methods: Cultured human Tenon fibroblasts treated with low-dose 0.01 nM mitomycin C for 2 weeks were subsequently treated with 0.1 to 100 microM mitomycin C in the absence or presence of 4 microM verapamil, and allowed to recover for 24 hours. Low-dose mitomycin C-treated fibroblasts were analysed for P-glycoprotein expression using flow cytometry, immunoblotting, and RT-PCR for mdr-1 mRNA. In addition, fibroblasts were treated with low dose 0.1 nM 5-fluorouracil for 2 weeks and analysed for P-glycoprotein expression using flow cytometry. Expression of P-glycoprotein was analysed in surgically removed Tenon tissue (n = 30) using immunohistochemistry. Of the 30 patients, 20 had a previous trabeculectomy, of which nine had previous adjuvant therapy with mitomycin C during trabeculectomy.

Results: Partial resistance to mitomycin C after low-dose mitomycin C pre-treatment was significantly neutralised by the addition of verapamil. Low-dose mitomycin C up-regulated P-glycoprotein expression, but not mdr-1 mRNA expression. 5-Fluorouracil did not induce P-glycoprotein expression. P-glycoprotein expression was detected in all nine patients exposed to mitomycin C during previous trabeculectomies. Only six of 21 specimens from patients not previously exposed to mitomycin C showed faint P-glycoprotein expression.

Conclusion: The induction of P-glycoprotein by mitomycin C could explain some failures that occur after repeated use of mitomycin C during trabeculectomy. The concomitant use of verapamil or the use of 5-fluorouracil alone could increase the success rate of repeat trabeculectomies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00417-007-0695-1DOI Listing

Publication Analysis

Top Keywords

p-glycoprotein expression
24
low-dose mitomycin
16
mitomycin
15
p-glycoprotein
9
multidrug resistance
8
mitomycin trabeculectomy
8
failures occur
8
cultured human
8
human tenon
8
tenon fibroblasts
8

Similar Publications

Multidrug resistance (MDR) has become a major challenge in tumor chemotherapy, primarily associated with the overexpression of P-glycoprotein (P-gp). Inhibiting P-gp expression and function through redox dyshomeostasis has shown great potential for reversing MDR. Here, a nanometer system of copper-based metal-organic framework (HA-CuMOF@DOX) modified with hyaluronic acid (HA) was constructed to overcome MDR via two-way regulation of redox homeostasis under hypoxia.

View Article and Find Full Text PDF

Introduction: Deglycosylated azithromycin (Deg-AZM), a new transgelin agonist with positive therapeutic effects on slow transit constipation, has been approved for clinical trials in 2024. This work investigated the drug metabolism and transport of Deg-AZM to provide research data for further development of Deg-AZM.

Methods: A combination of UPLC-QTOF-MS was used to obtain metabolite spectra of Deg-AZM in plasma, urine, feces and bile.

View Article and Find Full Text PDF

IFN-γ reprograms cardiac microvascular endothelial cells to mediate doxorubicin transport and influences the sensitivity of mice to doxorubicin-induced cardiotoxicity.

Exp Mol Med

January 2025

Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, P. R. China.

Doxorubicin (DOX) is a first-line chemotherapy agent known for its cardiac toxicity. DOX-induced cardiotoxicity (DIC) severely limits the use for treating malignant tumors and is associated with a poor prognosis. The sensitivity to DIC varies among patients, but the precise mechanisms remain elusive.

View Article and Find Full Text PDF

Regarding flotillin knockdown, drug resistance is reversed in colorectal cancer (CRC) cell lines; this is associated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, as our previous experimental results indicated. However, the exact mechanism underlying this pathway remains unclear. PI3K inhibitor and activator were added separately to clarify the role of the PI3K pathway in reversing drug resistance.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to investigate the effect of intestinal dysbiosis on the bioavailability of voriconazole and to explore any underlying mechanisms.

Method: Sprague-Dawley rats were randomly divided into two groups: a normal control group and a ceftriaxone-associated dysbiotic group. The composition of the intestinal flora was examined using 16S rRNA sequencing analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!