Cell culture assays in various formats have been used to study the infectivity of Cryptosporidium spp. as well as to determine the infectivity of naturally occurring oocysts in water. Currently, cell culture assays for infectious Cryptosporidium spp. in water have largely been limited to practice in research laboratories. One obstacle to the routine use of Cryptosporidium cell culture assays for the analysis of water samples is the coordination of water sample collection and processing with readiness of cell culture monolayers. For most Cryptosporidium cell culture assays, monolayers are allowed to develop for 24 to 48 h to reach 80 to 100% confluence prior to inoculation. In this study, we used immunofluorescent assay microscopy to evaluate freshly confluent (2-day-old) and aged (8- to 67-day-old) HCT-8 cell monolayers for their ability to support Cryptosporidium parvum infection. HCT-8 monolayers as old as 67 days were clearly shown to support infection. In two of three experiments, aged monolayers (8- to 11-day-old and 11- to 22-day-old, respectively) developed the same number of C. parvum clusters of infection as freshly confluent monolayers. Results suggest that it may be possible to use cell monolayers from freshly confluent to 3 weeks old on hand for infectivity assays without having to schedule sample processing to coincide with development of freshly confluent monolayers. This would make Cryptosporidium cell culture assays much more feasible for water quality and utility laboratories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2168060 | PMC |
http://dx.doi.org/10.1128/AEM.01579-07 | DOI Listing |
Background: Human pluripotent stem cell (hPSC)-derived brain organoids patterned towards the cerebral cortex are valuable models of interactions occurring in vivo in cortical tissue. We and others have used these cortical organoids to model dominantly inherited FTD-tau. While these studies have provided essential insights, cortical organoid models have yet to reach their full potential.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School Of Medicine at Mount Sinai, New York, NY, USA.
Background: Despite increasing knowledge of the etiology of neurodegenerative diseases, translation of these benefits into therapeutic advances for Alzheimer's Disease and related diseases (ADRD) has been slow. Drug repurposing is a promising strategy for identifying new uses for approved drugs beyond their initial indications. We developed a high-throughput drug screening platform aimed at identifying drugs capable of reducing proteotoxicity in vivo (Aß toxicity in Caenorhabditis elegans) AND inhibiting microglial inflammation (TNF-alpha IL-6), both implicated in driving AD(figure attached with sample of results in C.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.
Background: Alzheimer's disease (AD) is a neurodegenerative disorder primarily associated with aging, but manifests as a complex interplay of multiple factors. Decline in sex-hormones, particularly 17-beta estradiol, is linked to the aging process. The risk for onset of AD significantly increases with aging and loss of estradiol.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, University of Fukui, Matsuoka, Fukui, Japan.
Background: One of the pathological hallmarks in Alzheimer's disease (AD) brain is neurofibrillary tangles (NFTs) composed of highly phosphorylated tau protein. Clinical benefit of traditional Japanese Kampo Yokukansan for dementia patients, including AD was suggested. In this study, we investigated whether yokukansan participates in the degradation of phosphorylated tau and toxic oligomeric species of tau by using cell culture model of tauopathy, M1C cells.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Alzheimer's disease (AD) is a progressive and multifactorial neurodegenerative disease that still has no cure. Different pathological processes contribute to the disease's development, such as the presence of amyloid beta (Aβ) plaques, neurofibrillary tangles (NFTs), glutamatergic excitotoxicity, oxidative stress, and neuroinflammation. Chalcones are polyphenolic compounds of natural origin with a wide range of biological activities, and emerging studies have reported neurotrophic activity, anti-inflammatory and antioxidant effects, and the inhibition of Aβ aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!