An atom efficient, green protocol for the synthesis of fifteen 2-amino-6-methyl-4-aryl-8-[(E)-arylmethylidene]-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]pyridine-3-carbonitriles in quantitative yields from the reaction of 1-methyl-3,5-bis[(E)-arylmethylidene]-tetrahydro-4(1H)-pyridinones with malononitrile in presence of solid sodium ethoxide under solvent-free condition is described. The compounds were tested for their in vitro activity against Mycobacterium tuberculosis H37Rv (MTB), multi-drug resistant tuberculosis (MDR-TB), and Mycobacterium smegmatis using agar dilution method. 2-Amino-4-[4-(dimethylamino)phenyl]-8-(E)-[4-(dimethylamino)phenyl]methylidene-6-methyl-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]-pyridine-3-carbonitrile was found to be the most potent compound (MIC: 0.43microM) against MTB and MDR-TB, being 100 times more active than standard, isoniazid against MDR-TB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2007.09.095 | DOI Listing |
Molecules
December 2024
High & New Technology Research Center of Henan Academy of Sciences, No. 56 Hongzhuan Road, Zhengzhou 450002, China.
A series of colorful binuclear Schiff bases derived from the different diamine bridges including 1,2- ethylenediamine (bis-Et-SA, bis-Et-4-NEt, bis-Et-5-NO, bis-Et-Naph), 1,2-phenylenediamine (bis-Ph-SA, bis-Ph-4-NEt, bis-Ph-5-NO, bis-Ph-Naph), dicyano-1,2-ethenediamine (bis-CN-SA, bis-CN-4-NEt, bis-CN-5-NO, bis-CN-Naph) have been designed and prepared. The optical properties of these binuclear Schiff base ligands were fully determined by UV-Vis absorption spectroscopy, fluorescence emission spectroscopy, and time-dependent-density functional theory (TD-DFT) calculations. The inclusion of D-A systems and/or π-extended systems in these binuclear Schiff base ligands not only enables adjustable RGB light absorption and emission spectra (300~700 nm) but also yields high fluorescence quantum efficiencies of up to 0.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China.
Oxazoles are important five-membered heterocycles that contain both nitrogen and oxygen atoms. Due to their wide range of biological activities, many oxazoles demonstrate potential for extensive application in various fields, including medicinal chemistry. Trifluoromethyl carbinol, an important pharmacophore, contains both trifluoromethyl and hydroxyl groups and is common in molecules with important biological activities.
View Article and Find Full Text PDFMolecules
December 2024
Department of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
Thermally activated delayed fluorescence (TADF) materials with high photoluminescence quantum yields and a fast reverse intersystem crossing (RISC) are of the highest interest for organic light-emitting diodes (OLEDs). In the past decade, triaryl boranes with multiple resonance effect (MR) have captured significant attention. The efficiency of MR-TADF emitters strongly depends on small singlet-triplet energy gaps (ΔE), but also on large reverse intersystem crossing (RISC) rate constants (k).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
Developing highly efficient and cost-competitive electrocatalysts for the hydrogen evolution reaction (HER), which can be applied to hydrogen production by water splitting, is of great significance in the future of the zero-carbon economy. Here, by means of first-principles calculations, we have scrutinized the HER catalytic capacity of single-atom catalysts (SACs) by embedding transition-metal atoms in the C and Mo vacancies of a tetragonal MoC slab, where the transition-metal atoms refer to Ti, V, Cr, Mn, Fe, Co, Ni and Cu. All the MoC-based SACs exhibit excellent electrical conductivity, which is favorable to charge transfer during HER.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, PR China. Electronic address:
Single-atom catalysts (SACs), known for their high atomic utilization efficiency, are highly attractive for electrochemical CO conversion. Nevertheless, it is struggling to use a single active site to overcome the linear scaling relationship among intermediates. Herein, an isolated diatomic Ni-Mn dual-sites catalyst was anchored on nitrogenated carbon, which exhibits remarkable electrocatalytic performance towards CO reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!