Leptin and zinc are involved in the regulation of appetite. Copper is a trace element regulating the functions of several cuproenzymes that are essential for life. To evaluate the relationship between zinc and copper status and the leptin system in humans, we examined whether leptin concentrations in the mother and the newborn correlate with the weight of mother, placenta and newborn. A total of 88 pregnant women at 38-42 weeks' gestation were studied. All infants were categorized as small for gestational age (SGA) (n = 16), average for gestational age (AGA) (n = 59) or large for gestational age (LGA) (n = 13). Leptin, zinc, and copper levels were measured in maternal and cord serum at birth. Maternal BMI and placental weight of the LGA groups were significantly higher than those of the SGA and AGA groups. Cord and maternal leptin levels of the SGA groups were significantly lower than those of the AGA and LGA groups. Maternal serum leptin levels were positively correlated with BMI and maternal zinc levels in all groups. Cord serum leptin levels of all groups were positively correlated with birth weight and placental weight. Birth weight was negatively correlated with maternal and cord copper level of all groups. Umbilical leptin concentrations of SGA newborns correlated with leptin concentrations of their mothers. In all pregnancies, birth weight increases in association with increase in cord leptin level. Our results suggest that maternal zinc but not copper level has an effect on maternal serum leptin levels. The increase in copper level in both maternal and cord blood may contribute to restriction in fetal growth.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF03168223DOI Listing

Publication Analysis

Top Keywords

birth weight
16
zinc copper
16
maternal cord
16
leptin levels
16
leptin
12
leptin zinc
12
leptin concentrations
12
gestational age
12
serum leptin
12
copper level
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!