AI Article Synopsis

  • The study investigates how UV radiation activates NF-kappaB, a transcription factor in mammals, primarily through the ATM and PKC pathways.
  • Caffeine is shown to specifically inhibit UV-induced NF-kappaB activation, without affecting TNFalpha-mediated activation.
  • The findings suggest that caffeine's inhibition of this process occurs by blocking the activities of ATM and PKC, which are essential for p38 MAPK activation in response to UV exposure.

Article Abstract

Mammalian ultraviolet (UV) radiation response is a gene induction cascade activated by several transcription factors, including NF-kappaB. Although NF-kappaB is induced by UV radiation, the signal transduction mechanism remains relatively unclear. In the present study, we show that UV-induced NF-kappaB activation is mediated by the activation of Ataxia telangiecia mutated (ATM) and protein kinase C (PKC). We also show that caffeine specifically inhibits UV-mediated NF-kappaB activation, but not TNFalpha-mediated NF-kappaB activation. In addition, our study shows that ATM, but not ATM-Rad3-related (ATR) or DNA-dependent protein kinase (DNA-PK) is involved in UV-induced NF-kappaB activation. Because SB203580 (a p38 MAPK inhibitor), or Calphostin C or rottlerin (PKC inhibitors) was able to inhibit UV-mediated NF-kappaB activation, we evaluated whether caffeine could inhibit p38 MAPK or PKC activity. Caffeine or rottlerin inhibited UV-induced phosphorylation of p38 MAPK, but not anisomycin-induced phosphorylation of p38 MAPK, suggesting that p38 MAPK is downstream of PKC. Additionally, caffeine could effectively inhibit UV-induced increases in PKC activity. Taken together, our study demonstrates that caffeine is a potent inhibitor of UV-induced NF-kappaB activation. Additionally, this inhibition occurs due to the inhibitory action of caffeine on ATM and PKC, resulting in the inhibition of p38 MAPK activation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-007-9628-xDOI Listing

Publication Analysis

Top Keywords

nf-kappab activation
28
p38 mapk
24
uv-mediated nf-kappab
12
uv-induced nf-kappab
12
nf-kappab
9
activation
9
caffeine inhibits
8
inhibits uv-mediated
8
protein kinase
8
pkc activity
8

Similar Publications

Aim: To explore the role of the hub gene Transforming Growth Factor Beta Induced (TGFBI) in Intervertebral disc degeneration (IDD) pathogenesis and its regulatory relationship with Membrane Associated Ring-CH-Type Finger 8 (MARCHF8).

Background: IDD is a prevalent musculoskeletal disorder leading to spinal pathology. Despite its ubiquity and impact, effective therapeutic strategies remain to be explored.

View Article and Find Full Text PDF

Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats.

Food Funct

January 2025

Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.

Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities.

View Article and Find Full Text PDF

The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.

View Article and Find Full Text PDF

LGR4 promotes proliferation and homing via activation of the NF‑κB signaling pathway in multiple myeloma.

Int J Oncol

February 2025

National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Furong Laboratory, Changsha, Hunan 410008, P.R. China.

Multiple myeloma (MM) is a plasma cell malignancy characterized by clonal proliferation in the bone marrow (BM). Previously, it was reported that G‑protein‑coupled receptor 4 (LGR4) contributed to early hematopoiesis and was associated with poor prognosis in patients with MM. However, the mechanism of cell homing and migration, which is critical for MM progression, remains unclear.

View Article and Find Full Text PDF

Objective: Heart failure (HF) causes structural and functional changes in the heart, with the pyroptosis-mediated inflammatory response as the core link in HF pathogenesis. E3 ubiquitin ligases participate in cardiovascular disease progression. Here, we explored the underlying molecular mechanisms of E3 ubiquitin ligase Smurf1 in governing HF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!