Heme-regulated eIF2alpha kinase (HRI) plays an essential protective role in anemias of iron deficiency, erythroid protoporphyria, and beta-thalassemia. In this study, we report that HRI protein is present in murine macrophages, albeit at a lower level than in erythroid precursors. Hri-/- mice exhibited impaired macrophage maturation and a weaker antiinflammatory response with reduced cytokine production upon LPS challenge. The level of production of hepcidin, an important player in the pathogenesis of the anemia of inflammation, was significantly decreased in Hri-/- mice, accompanied by decreased splenic macrophage iron content and increased serum iron content. Hepcidin expression was also significantly lower, with a concomitant increase in serum iron in Hri-/- mice upon LPS treatment. We also demonstrated an impairment of erythrophagocytosis by Hri-/- macrophages both in vitro and in vivo under chronic hemolytic anemia, providing evidence for the role of HRI in recycling iron from senescent red blood cells. This work demonstrates that HRI deficiency attenuates hepcidin expression and iron homeostasis in mice, indicating a potential role for HRI in the anemia of inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2000811PMC
http://dx.doi.org/10.1172/JCI32084DOI Listing

Publication Analysis

Top Keywords

hri-/- mice
12
heme-regulated eif2alpha
8
eif2alpha kinase
8
iron homeostasis
8
macrophage maturation
8
anemia inflammation
8
iron content
8
serum iron
8
hepcidin expression
8
role hri
8

Similar Publications

Reduced PI3K(p110α) induces atrial myopathy, and PI3K-related lipids are dysregulated in athletes with atrial fibrillation.

J Sport Health Sci

January 2025

Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, Victoria 3086, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton, Victoria 3800, Australia; Heart Research Institute, Newtown, New South Wales 2042, Australia. Electronic address:

Background: Elucidating mechanisms underlying atrial myopathy, which predisposes individuals to atrial fibrillation (AF), will be critical for preventing/treating AF. In a serendipitous discovery, we identified atrial enlargement, fibrosis, and thrombi in mice with reduced phosphoinositide 3-kinase (PI3K) in cardiomyocytes. PI3K(p110α) is elevated in the heart with exercise and is critical for exercise-induced ventricular enlargement and protection, but the role in the atria was unknown.

View Article and Find Full Text PDF

Cellular stressors inhibit general protein synthesis while upregulating stress response transcripts and/or proteins. Phosphorylation of the translation factor eIF2α by one of the several stress-activated kinases is a trigger for such signaling, known as the integrated stress response (ISR). The ISR regulates cell survival and function under stress.

View Article and Find Full Text PDF

The generation of tissue-specific mouse models has provided a powerful strategy to understand the role of genes in specific tissues/cells of interest under control/basal conditions and in response to physiological and pathological stimuli. Here we describe the generation of cardiomyocyte-specific FoxO1 knockout mice using Cre-loxP technology to examine the role of FoxO1 for the induction of heart enlargement (cardiac hypertrophy) in settings of health and disease. We highlight breeding strategies for generating tissue-specific mouse models and key experimental considerations during characterization.

View Article and Find Full Text PDF

CaMKII suppresses proteotoxicity by phosphorylating BAG3 in response to proteasomal dysfunction.

EMBO Rep

October 2024

Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.

Protein quality control serves as the primary defense mechanism for cells against proteotoxicity induced by proteasome dysfunction. While cells can limit the build-up of ubiquitinated misfolded proteins during proteasome inhibition, the precise mechanism is unclear. Here, we find that protein kinase Ca/Calmodulin (CaM)-dependent protein kinase II (CaMKII) maintains proteostasis during proteasome inhibition.

View Article and Find Full Text PDF

The integrated stress response (ISR) is a vital signaling pathway initiated by four kinases, PERK, GCN2, HRI and PKR, that ensure cellular resilience and protect cells from challenges. Here, we investigated whether increasing ISR signaling could rescue diabetes-like phenotypes in a mouse model of diet-induced obesity (DIO). We show that the orally available and clinically approved GCN2 activator halofuginone (HF) can activate the ISR in mouse tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!