Background: Therapeutic options for DiGeorge syndrome (DGS) with profound T-cell deficiency are very limited. Thymic transplantation has shown promising results but is not easily available. Hematopoietic cell transplantation (HCT) has been successful in restoring immune competence in the short term.
Objective: Present the long-term follow-up of 2 patients with complete DGS who received bone marrow transplants in the neonatal period from HLA-matched siblings, and perform a multicenter survey to document the status of other patients with DGS who have undergone HCT.
Methods: Immune function assessment by immunophenotyping, lymphocyte proliferation, T-cell receptor excision circles, single nucleotide polymorphism mapping arrays, spectratyping, cytogenetics, and fluorescence in situ hybridization were used.
Results: Among reported patients with DGS receiving HCT, survival is greater than 75%. Our patients are in their 20s and in good health. Their hematopoietic compartment shows continuous engraftment with mixed chimerism, normal T-cell function, and humoral immunity. Circulating T cells exhibit a memory phenotype with a restricted repertoire and are devoid of T-cell receptor excision circles.
Conclusion: These features suggest that T-cell reconstitution has occurred predominantly through expansion of the donors' mature T-cell pool. Although restricted, their immune systems are capable of providing substantial protection to infection and respond to vaccines. We conclude that bone marrow transplant achieves long-lived reconstitution of immune function in complete DGS and is a good alternative to thymic transplantation in patients with a suitable donor.
Clinical Implications: Bone marrow transplant in complete DGS using an HLA-matched sibling donor provides long-lasting immunity and is a suitable and more available alternative to thymic transplantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaci.2007.08.048 | DOI Listing |
JAMA Oncol
January 2025
Division of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Cleveland Clinic Pediatric Institute, Cleveland, Ohio.
Am J Physiol Cell Physiol
January 2025
Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.
It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.
View Article and Find Full Text PDFCytotherapy
December 2024
Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China. Electronic address:
We conducted a systematic review and meta-analysis to evaluate the outcomes of Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) in the treatment of Shwachman-Diamond syndrome (SDS). A literature search was performed on PubMed, Embase, and Web of Science. After screening 397 articles, 10 studies were included.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2024
Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica.
Brucellosis has therapeutic challenges due to 3%-15% relapses/therapeutic failures (R/TF) after antibiotic treatment. Therefore, determining the antibiotic concentration in tissues, the physiopathological parameters, and the R/TF after treatment is relevant. After exploring different antibiotic quantities, we found that a combined dose of 100 µg/g of doxycycline (for 45 days) and 7.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
ATP-dependent chromatin remodeling protein ATRX is an essential regulator involved in maintenance of DNA structure and chromatin state and regulation of gene expression during development. ATRX was originally identified as the monogenic cause of X-linked α-thalassemia mental retardation (ATR-X) syndrome. Affected individuals display a variety of developmental abnormalities and skeletal deformities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!