We analyze theoretically adiabatic quantum pumping through a normal conductor that couples the normal regions of two superconductor - normal-metal - superconductor Josephson junctions. By using the phases of the superconducting order parameter in the superconducting contacts as pumping parameters, we demonstrate that a nonzero pumped charge can flow through the device. The device exploits the evolution of the superconducting phases due to the ac Josephson effect, and can therefore be operated at very high frequency, resulting in a pumped current as large as a few nanoamperes. The experimental relevance of our calculations is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.99.086601 | DOI Listing |
Amino Acids
January 2025
Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia.
Four aliphatic amino acids-α-aminobutyric acid (AABA), β-aminobutyric acid (BABA), α-aminoisobutyric acid (AAIBA) and β-aminoisobutyric acid (BAIBA) were investigated in water as a solvent by two quantum chemical methods. B3LYP hybrid version of DFT was used for geometry optimization and a full vibrational analysis of neutral molecules, their cations and anions in the canonical and zwitterionic forms (6 forms for each species). Ab initio DLPNO-CCSD(T) method was applied in the geometry pre-optimized by B3LYP.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
The quantum-electrodynamic non-adiabatic emission (QED-NAE) is a type of radiatively assisted vibronic de-excitation due to electromagnetic vacuum fluctuations on non-adiabatic processes. Building on our previous work [Tsai et al., J.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Nantes Université, CNRS, CEISAM UMR 6230, Nantes, France.
Carbonyl complexes of metals with an α-diimine ligand exhibit both emission and ligand-selective photodissociation from MLCT states. Studying this photodissociative mechanism is challenging for experimental approaches due to an ultrafast femtosecond timescale and spectral overlap of multiple photoproducts. The photochemistry of a prototypical system is investigated with non-adiabatic dynamic simulations.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China.
Single-atom manipulation has emerged as an effective strategy for enhancing the photocatalytic efficiency. However, the mechanism of photogenerated carrier dynamics under single-atom modulation remains unclear. Combining first-principles calculations and non-adiabatic molecular dynamics simulations, we systematically studied carrier transfer and recombination in the oxygen reduction reaction of single-atom-doped CN systems.
View Article and Find Full Text PDFCommun Chem
January 2025
Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, UK.
Various photoactive molecules contain motifs built on aza-aromatic heterocycles, although a detailed understanding of the excited state photophysics and photochemistry in such systems is not fully developed. To help address this issue, the non-adiabatic dynamics operating in azanaphthalenes under hexane solvation was studied following 267 nm excitation using ultrafast transient absorption spectroscopy. Specifically, the species quinoline, isoquinoline, quinazoline, quinoxaline, 1,6-naphthyridine, and 1,8-naphthyridine were investigated, providing a systematic variation in the relative positioning of nitrogen heteroatom centres within a bicyclic aromatic structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!